

THEORETICAL QUESTIONS

$$As soil is submerged (and saturated) = D V_{1} = V_{1}$$

$$A = V_{2} + V_{1} \cdot V_{2} = V_{2} \cdot V_{3} = V_{3} \cdot V_{4} = V_{4} \cdot V_{5} = V_{5} \cdot$$

- 2 Lesson 2. Slade 14. See next page.
- (3) A soil is named GRAVEL when

 % coarse particles > % fine particles

 AND

 % growel particles > % sand particles
 - In order to distinguish clayey soils from sifty soils, the Casagrante's Plasticity chart should be used. (H) Sifty soils to below "the A"; (C) Clayey soils to above "the A"
 - · SP-SM with silt } = Poorty-graded sand with silt sand poorty-graded
- (4) Lesson 3. Slide 13. See next page.

2. BASIC CHARACTERISTICS OF SOILS AND ROCKS.

PHYSICAL PROPERTIES OF INTACT ROCKS (II). Unit weight and porosity.

Unit weight
$$(\gamma)$$
 $\gamma = \frac{W}{V}$

Porosity (n)
$$n = \frac{V_v}{V}$$

It is a very important property, because if voids exist, there will be weakness areas.

Effective porosity (n_e)

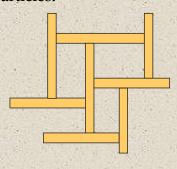
$$\mathbf{n}_{e} = \frac{\left(\mathbf{W}_{sat} - \mathbf{W}_{s}\right)}{\mathbf{\gamma}_{w} \cdot \mathbf{V}}$$

- 14 -

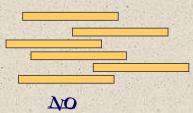
The interconnected void spaces in a rock that contribute to fluid flow.

Rock	Mass density (g/cm³)	Porosity (%)
Basalt	2.7 - 2.9	0.1 - 2
Chalk	1.7 - 2.3	30
Gneiss	2.7 - 3.0	0.5 - 1,5
Granite	2.6 - 2.7	0.5 - 1,5
Limestone	2.3 - 2.6	5 - 20
Quartzite	2.6 - 2.7	0.1 - 0.5
Schist	2.5 - 2.8	3
Sandstone	2.3 - 2.6	5 - 25
Slate	2.5 - 2.7	0.1 - 1
Tufa	1.9 - 2.3	14 - 40

These properties are determined by the test method defined in UNE-EN 1936:2007 standard.


HERSCHOUNGERS STEERS (BOWN HESSES SH

3. SOIL AND ROCK CLASSIFICATION.


PROPERTIES OF CLAYS (III). Particle arrangements.

→ Flocculated structure, edge-to-face arrangement. ⇒ High void ratios, low density, high water content, strong and resistant to external forces because of the attraction between particles.

COHESION

→ Dispersed structure, face-to-face arrangement. It occurs after reworking or remoulding.

AO COHESION

EXERCISE 1

$$y = 19 \text{ kn/m}^3 = y_{\text{sat}}$$

 $G = 2.7 - p \quad y_{\text{s}} = 6. \quad y_{\text{w}} = 2.7 \cdot 9.8 = 26.46 \text{ kn/m}^3$
 $S_{\text{c}} = 100\% = 1$

$$39 = 26.46(3-n) + n.9.8 = 26.46 - 26.46 \cdot n + 9.8n = 26.46 - 16.66 \cdot n = 7$$

 $\Rightarrow n = 0.448$

$$e = \frac{n}{1-n} = \frac{0.448}{1-0.448} = 0.812$$

$$S_r = \frac{W}{e} \cdot \frac{8s}{yw} = \frac{W}{e} \cdot G \Rightarrow W = \frac{S_r \cdot e}{G} = \frac{100 \cdot 0.812}{2.7} = 30.1\%$$

EXERCISE 2

Passes #200 = 157.85 g (PAN)
$$\Rightarrow$$
 Fines = $\frac{157.85}{210.59} = 0.7495 = 75% ($\approx 0.08 \, \text{mm}$)$

Coarse particles =
$$100-75=25\%$$

Passes No 4 = $210.59g \Rightarrow 5and(\%) = #4 - #200 = 100-75 = 25\%$

Fasses No 4 = $210.59g \Rightarrow 5and(\%) = 0\%$

$$W_p = \frac{6.56 - 5.34}{5.34} = 22.8 \%$$

$$W_{18} = \frac{20.66 - 15.09}{15.09} = 36.9\%$$

$$W_{18} = \frac{25.21 - 17.94}{17.94} = 45.5\%$$
Chart $\rightarrow W_{L}^{+} = 38\%$

$$W_{26} = \frac{18.03 - 11.56}{11.56} = 56.0\%$$

$$W_{18} = \frac{41.03 - 25.55}{25.55} = 60.6\%$$
(hat -0 W_L = 57.%)

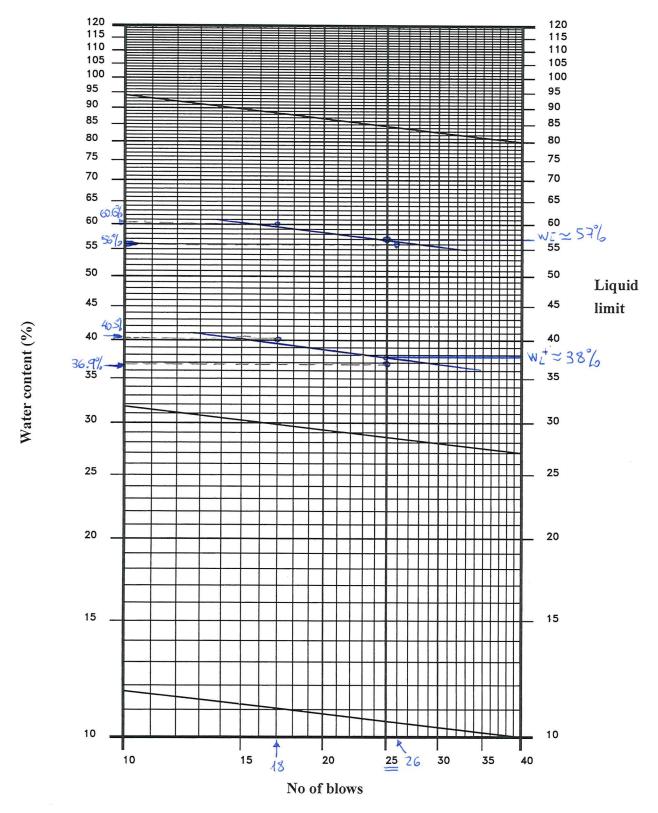
SHEET 1 Fine - grained soil (>50% passes #200 sieve) USCS

$$\frac{W_L^+}{W_L^-} = \frac{38}{57} = 0.66 < 0.75 = D$$
 Organic fines (0)
 $W_L = W_L^- = 57\%$ — SHEET G

SHEET 6
$$W_L > 50$$
 = SHEET 7

$$I_p = W_L - W_p = 57 - 22.8 = 34.2$$

$$W_L = 57\%$$
Above A-Gre
and $I_p > 7$


=> OH, Organic clay

OH, ORGANIC CLAY WITH SAND

DEPARTAMENTO DE INGENIERIA MECANICA Escuela de Ingeniería de Bilbao

INGENIARITZA MEKANIKOA SAILA Bilboko Ingeniaritza Eskola

FIGURE TO DETERMINE LIQUID LIMIT