MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

TEST 1. SOLUTIONS

SOLUTION EXERCISE 1: If $n=3,2^{3}=8>2.3+1=7$, and the statement fulfills. Suppose now that for any $k>3$ the statement $2^{k}>2 k+1$ fulfills, and we prove that the same happens for the case $k+1$. In fact, $2^{k+1}=2^{k} .2>(2 k+1) .2=4 k+2=2 k+2+2 k>2(k+1)+1$, since $2 k>1$.

SOLUTION EXERCISE 2: (i) Clearly f is not injective, since for instance $f(-1)=2=f(-2)$, and $-1 \neq-2$. Besides, f is not surjective, since $f(\mathbb{R})=(-1, \infty) \neq(-\infty, \infty)$.
(ii) Taking into account the graph of the function f, we realize that $f((1,3))=\{1\}$ and $f^{-1}((0,1))=(4,5)$.

SOLUTION EXERCISE 3:

(i) First we compute the function $f \circ g$ as follows:

$$
(f \circ g)(x)=\left\{\begin{array}{rrr}
1, & \text { when } & x \leq-1 / 2 \\
2 x+2, & \text { when } & x>-1 / 2
\end{array}\right.
$$

Clearly $f \circ g$ is not injective, since $(f \circ g)(-1)=1=(f \circ g)(-2)$, and $-1 \neq-2$. Neither the function $f \circ g$ is surjective, since $(f \circ g)(\mathbb{R}) \neq(-\infty, \infty)$. Below the graph of the function $f \circ g$ appears:

(ii) Taking into account the graph of the function $f \circ g$, we observe that $(f \circ g)^{-1}(1)=(-\infty,-1 / 2]$ and that $(f \circ g)^{-1}(2)=\{0\}$.

SOLUTION EXERCISE 4:

(i) Since $f(-1)=0=f(1)$, it follows that f is not injective. Besides, $f(\mathbb{R})=[-1, \infty)$, which means that f is not surjective.
(ii) Taking into account the graph of f, we realize that $f((0,3])=(-1,3]$ and $f^{-1}([-3,3])=[-3,-2) \cup[-2,2] \cup(2,3]=[-3,3]$.

(iii) The composition function $g \circ f$ is computed as follows:

$$
(g \circ f)(x)=\left\{\begin{array}{rll}
-x, & \text { if } & x<-2 \\
x^{2}-1, & \text { if } & -2 \leq x \leq-1 \\
-x^{2}+1, & \text { if } & -1<x<1 \\
x^{2}-1, & \text { if } & 1 \leq x \leq 2 \\
x, & \text { if } & x>2
\end{array}\right.
$$

Below it appears the graph of the function $g \circ f$.

Finally, $(g \circ f)^{-1}(1)=\{-\sqrt{2}, \sqrt{2}, 0\}$.
SOLUTION EXERCISE 5: Take any $z_{0} \in Z$. Since the function $g \circ f$: $X \longrightarrow Z$ is surjective, there exists some $x_{0} \in X$ such that $(g \circ f)\left(x_{0}\right)=z_{0}$. In particular, $(g \circ f)\left(x_{0}\right)=g\left(f\left(x_{0}\right)\right)=z_{0}$, being $f\left(x_{0}\right)$ an element of Y. It means, that there exists $y_{0}=f\left(x_{0}\right) \in Y$ such that $g\left(y_{0}\right)=z_{0}$, i.e. g is a surjective function. However, the converse does not always hold. Consider, for instance $f: \mathbb{R} \longrightarrow \mathbb{R}$ such that $f(x)=|x|$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ such that $g(x)=x+1$. It is easy to prove that g is surjective, but $g \circ f: \mathbb{R} \longrightarrow \mathbb{R}$ defining as $(g \circ f)(x)=|x|+1$ is not surjective.
SOLUTION EXERCISE 6: First of all, we can suppose that $n \in \mathbb{N}$. Taking into account the remainders module $5, n$ can be written as $5 q_{1}$, $5 q_{2}+1,5 q_{3}+2,5 q_{4}+3$ or $5 q_{5}+4$, for some $q_{1}, q_{2}, q_{3}, q_{4}, q_{5} \in \mathbb{N}$. Thus, computing the square of n we have

$$
\begin{gathered}
n^{2}=\left(5 q_{1}\right)^{2}=25 q_{1}{ }^{2}=5\left(5 q_{1}^{2}\right) \\
n^{2}=\left(5 q_{2}+1\right)^{2}=25 q_{2}^{2}+10 q_{2}+1=5\left(5 q_{2}^{2}+2 q_{2}\right)+1
\end{gathered}
$$

$$
\begin{gathered}
n^{2}=\left(5 q_{3}+2\right)^{2}=25 q_{3}^{2}+20 q_{3}+4=5\left(5 q_{3}^{2}+4 q_{3}\right)+4 \\
n^{2}=\left(5 q_{4}+3\right)^{2}=25 q_{4}^{2}+30 q_{4}+9=5\left(5 q_{4}^{2}+6 q_{4}+1\right)+4 \\
n^{2}=\left(5 q_{5}+4\right)^{2}=25 q_{5}^{2}+40 q_{5}+16=5\left(5 q_{5}^{2}+8 q_{5}+3\right)+1
\end{gathered}
$$

where $5 q_{1}^{2}, 5 q_{2}^{2}+2 q_{2}, 5 q_{3}^{2}+4 q_{3}, 5 q_{4}^{2}+6 q_{4}+1$ and $5 q_{5}^{2}+8 q_{5}+3$ are natural numbers.

SOLUTION EXERCISE 7: (i) Let us denote by $d_{1}=\operatorname{gcd}(a, b)$ and by $d_{2}=\operatorname{gcd}(b, r)$. By the first property of d_{1} we have that $d_{1} \mid a$ and $d_{1} \mid b$. In particular, $d_{1} \mid b q$, and consequently $d_{1} \mid(a-b q)=r$. Now using the second property of d_{2}, it follows that $d_{1} \mid d_{2}$. On the other hand, by the first property of d_{2}, we have that $d_{2} \mid b$ and $d_{2} \mid r$. In particular, $d_{2} \mid b q$ and consequently $d_{2} \mid(b q+r)=a$. Now using the second property of d_{1}, it follows that $d_{2} \mid d_{1}$. Finally, since $d_{1}\left|d_{2}, d_{2}\right| d_{1}$ and $d_{1}, d_{2} \in \mathbb{N}$, we conclude that $d_{1}=d_{2}$, as required.
(ii) Making calculations we have that

$$
\begin{aligned}
102 & =44.2+14 \\
44 & =14.3+2 \\
14 & =2.7+0
\end{aligned}
$$

Applying the previous item (i), it follows that $\operatorname{gcd}(102,44)=\operatorname{gcd}(44,14)=$ $\operatorname{gcd}(14,2)=2$. Now making substitutions we have that $2=44-14.3=$ $44-3 .(102-44.2)=44+3.2 .44+(-3) .102=7.44+(-3) .102$. In conclusion $(7,-3) \in \mathbb{Z} \times \mathbb{Z}$ is a solution for the equation $44 x+102 y=2$.
SOLUTION EXERCISE 8: (i) Let us denote by $d_{1}=\operatorname{gcd}(a c, b)$ and by $d_{2}=\operatorname{gcd}(c, b)$. By the first property of d_{1}, we have that $d_{1} \mid a c$ and $d_{1} \mid b$. Since $\operatorname{gcd}(a, b)=1$, being d_{1} a divisor of b, d_{1} should not be a divisor of a, unless $d_{1}=1$, and as well $\operatorname{gcd}\left(d_{1}, a\right)=1$. Now since $d_{1} \mid a c$ and $\operatorname{gcd}\left(d_{1}, a\right)=1$, it follows that $d_{1} \mid c$, and therefore, using the second property of d_{2}, it follows that $d_{1} \mid d_{2}$. On the other hand, by the first property of d_{2}, we have that $d_{2} \mid c$ and $d_{2} \mid b$. In particular, $d_{2} \mid a c$, and by the second property of d_{1}, it follows that $d_{2} \mid d_{1}$. Finally, since $d_{1}\left|d_{2}, d_{2}\right| d_{1}$ and $d_{1}, d_{2} \in \mathbb{N}$, we conclude that $d_{1}=d_{2}$, as required.
(ii) We observe that $\operatorname{gcd}(5000,31768)=\operatorname{gcd}(31768,5000)$. Besides $31768=$ $11.19^{2} .8$ and the number 11.19^{2} is coprime with 5000 . So using the previous item (i) we get that $\operatorname{gcd}(31768,5000)=\operatorname{gcd}(8,5000)=8$, since $5000=8.5^{4}$.

