

MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country

TEST 1. STATEMENTS

Exercise 1. Prove by induction that the statement $2^n > 2n + 1$ fulfills, for any $n \ge 3$.

Exercise 2. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the function defined by parts as follows:

$$f(x) = \begin{cases} 2, & \text{when } x < 0\\ 1, & \text{when } 0 \le x \le 3\\ x - 4, & \text{when } x > 3 \end{cases}$$

- (i) Is the function f injective? Is it surjective?
- (ii) Calculate f((1,3)) and $f^{-1}((0,1))$.

Exercise 3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be two functions defined as follows:

$$f(x) = \begin{cases} 1, & \text{when } x \le -1\\ x+2, & \text{when } x > -1 \end{cases}$$

and

$$g(x) = 2x$$
, for any $x \in \mathbb{R}$.

- (i) Analyze whether the composition function $f \circ g$ is injective and/or surjective.
- (ii) In case it is possible, calculate $(f \circ g)^{-1}(1)$ and $(f \circ g)^{-1}(2)$.

Exercise 4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined by parts as follows:

$$f(x) = \begin{cases} -x, & \text{if } x < -2\\ x^2 - 1, & \text{if } -2 \le x \le 2\\ x, & \text{if } x > 2 \end{cases}$$

- (i) Analyze whether the function f is injective and/or surjective.
- (ii) Calculate f((0,3]) and the inverse image of the set [-3,3] by $f: f^{-1}([-3,3])$.
- (iii) Consider the function g over \mathbb{R} defined by the expression g(x) = |x|. Calculate the composition function $g \circ f$, and the inverse image of the set $\{1\}$ by the function $g \circ f$: $(g \circ f)^{-1}(1)$.

Exercise 5. Assume that given the functions $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$, the function $g \circ f$ is surjective. Then, prove that g is surjective, but that the converse implication does not fulfill.

Exercise 6. Prove that the square of any integer number is of type: 5k, 5k + 1 or 5k + 4, for some k integer number.

Exercise 7. i) Assume that a = bq + r, being $a, q \in \mathbb{Z}$, $b, r \in \mathbb{N}$ and $0 \le r < b$. Prove that $\gcd(a, b) = \gcd(b, r)$.

iii) Using the previous item (i), calculate $\gcd(102,44)$, and solve the equation 44x + 102y = 2, for some $(x,y) \in \mathbb{Z} \times \mathbb{Z}$.

Exercise 8. Assume that a, b are two integer numbers which are coprime, and that c is also an integer number. Prove that gcd(ac, b) = gcd(c, b). Latter on, using this result calculate gcd(5000, 31768).