MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

SOLUTIONS: 7th SUBJECT. POLYNOMIAL INEQUATIONS

SOLUTION EXERCISE 1:

(i) $3-2 x \geq 8-7 x$

The previous inequality is equivalent to: $-5 x+5 \leq 0$, and it is also equivalent to: $-x+1 \leq 0$. Thus, the solution is, $x \geq 1$.
(ii) $\frac{1}{5}(6-2 x)>\frac{1}{10}(1-x)$

The previous inequality is equivalent to: $2(6-2 x)>(1-x)$, and it is also equivalent to: $12-4 x>1-x$. Therefore, we have $11>3 x$, and finally we have $x<\frac{11}{3}$.

SOLUTION EXERCISE 2: The previous inequality is equivalent to: $0 \leq 2 x^{2}-3 x-5$, and the second degree polynomial can be factorized as $2 x^{2}-3 x-5=(x+1)(2 x-5)$. Therefore, the initial inequality is equivalent to: $0 \leq(x+1)(2 x-5)$. Now, we analyze the signs by using the following table:

	$(-\infty,-1)$	$(-1,2.5)$	$(2.5, \infty)$
$x+1$	-	+	+
$2 x-5$	-	-	+
$(x+1)(2 x-5)$	+	-	+

Hence, $x^{2}+6 x-1 \leq 3 x^{2}+3 x-6$ if and only if $x \in(-\infty,-1] \cup[2.5, \infty]$.
SOLUTION EXERCISE 3: The previous inequality is equivalent to: $0<x^{4}+3 x^{3}-$ $3 x^{2}+3 x-4$, and the fourth degree polynomial can be factorized as $x^{4}+3 x^{3}-3 x^{2}+$ $3 x-4=(x-1)(x+4)\left(x^{2}+1\right)$. Therefore, the initial inequality is equivalent to: $0<(x-1)(x+4)\left(x^{2}+1\right)$. Now, we analyze the signs by using the following table:

	$(-\infty,-4)$	$(-4,1)$	$(1, \infty)$
$x-1$	-	-	+
$x+4$	-	+	+
$x^{2}+1$	+	+	+
$(x-1)(x+4)\left(x^{2}+1\right)$	+	-	+

Hence, $3 x^{2}+4<x^{4}+3 x^{3}+3 x$ if and only if $x \in(-\infty,-4) \cup(1,-\infty$,$) .$
SOLUTION EXERCISE 4: The previous inequality is equivalent to: $x^{3}+x-4 x^{2}+6 \leq$ 0 , and the third degree polynomial can be factorized as $x^{3}+x-4 x^{2}+6=(x+1)(x-$ $2)(x-3)$. Therefore, the initial inequality is equivalent to: $(x+1)(x-2)(x-3) \leq 0$. Now, we analyze the signs by using the following table:

	$(-\infty,-1)$	$(-1,2)$	$(2,3)$	$(3, \infty)$
$x+1$	-	+	+	+
$x-2$	-	-	+	+
$x-3$	-	-	-	+
$(x+1)(x-2)(x-3)$	-	+	-	+

Hence, $x^{3}+x \leq 4 x^{2}-6$ if and only if $x \in(-\infty,-1] \cup[2,3]$.

