

MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology Department of Mathematics University of the Basque Country

SOLUTIONS: 7th SUBJECT. POLYNOMIAL INEQUATIONS

SOLUTION EXERCISE 1:

(i) $3 - 2x \ge 8 - 7x$

The previous inequality is equivalent to: $-5x + 5 \le 0$, and it is also equivalent to: $-x + 1 \le 0$. Thus, the solution is, $x \ge 1$.

(ii) $\frac{1}{5}(6-2x) > \frac{1}{10}(1-x)$

The previous inequality is equivalent to: 2(6 - 2x) > (1 - x), and it is also equivalent to: 12 - 4x > 1 - x. Therefore, we have 11 > 3x, and finally we have $x < \frac{11}{3}$.

SOLUTION EXERCISE 2: The previous inequality is equivalent to: $0 \le 2x^2 - 3x - 5$, and the second degree polynomial can be factorized as $2x^2 - 3x - 5 = (x+1)(2x-5)$. Therefore, the initial inequality is equivalent to: $0 \le (x+1)(2x-5)$. Now, we analyze the signs by using the following table:

	$(-\infty,-1)$	(-1, 2.5)	$(2.5,\infty)$
x+1	—	+	+
2x-5	_	—	+
(x+1)(2x-5)	+	_	+

Hence, $x^2 + 6x - 1 \le 3x^2 + 3x - 6$ if and only if $x \in (-\infty, -1] \cup [2.5, \infty]$.

SOLUTION EXERCISE 3: The previous inequality is equivalent to: $0 < x^4 + 3x^3 - 3x^2 + 3x - 4$, and the fourth degree polynomial can be factorized as $x^4 + 3x^3 - 3x^2 + 3x - 4 = (x - 1)(x + 4)(x^2 + 1)$. Therefore, the initial inequality is equivalent to: $0 < (x - 1)(x + 4)(x^2 + 1)$. Now, we analyze the signs by using the following table:

	$(-\infty, -4)$	(-4, 1)	$(1,\infty)$
x-1	_	—	+
x+4	—	+	+
$x^2 + 1$	+	+	+
$(x-1)(x+4)(x^2+1)$	+	—	+

Hence, $3x^2 + 4 < x^4 + 3x^3 + 3x$ if and only if $x \in (-\infty, -4) \cup (1, -\infty,)$.

SOLUTION EXERCISE 4: The previous inequality is equivalent to: $x^3 + x - 4x^2 + 6 \le 0$, and the third degree polynomial can be factorized as $x^3 + x - 4x^2 + 6 = (x+1)(x-2)(x-3)$. Therefore, the initial inequality is equivalent to: $(x+1)(x-2)(x-3) \le 0$. Now, we analyze the signs by using the following table:

	$(-\infty,-1)$	(-1,2)	(2,3)	$(3,\infty)$
x+1	_	+	+	+
x-2	_	—	+	+
x-3	_	—	—	+
(x+1)(x-2)(x-3)	_	+	—	+

Hence, $x^3 + x \le 4x^2 - 6$ if and only if $x \in (-\infty, -1] \cup [2, 3]$.