MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

SOLUTIONS: 6th SUBJECT. POLYNOMIALS

SOLUTION EXERCISE 1: Observe that $f(x)=x^{3}-1=(x-1)\left(x^{2}+x+1\right)$, and that the polynomial $x^{2}+x+1$ does not have roots over \mathbb{R}. Thus, the only real root of $f(x)$ is 1 .

SOLUTION EXERCISE 2. Hint: $\operatorname{gcd}\left(x^{5}-1, x^{3}+x-2\right)=\operatorname{gcd}\left(x^{3}+x-2,2 x^{2}+\right.$ $x-3)=\operatorname{gcd}\left(2 x^{2}+x-3, \frac{11 x}{4}-\frac{11}{4}\right)=\operatorname{gcd}\left(\frac{11 x}{4}-\frac{11}{4}, 0\right)$. Thus, $\operatorname{gcd}\left(x^{5}-1, x^{3}+x-2\right)=x-1$.

SOLUTION EXERCISE 3. Hint: Argue by way of contradiction in both implications, taking into account that $\operatorname{dg}(f(x))=2$ or 3 .

SOLUTION EXERCISE 4. Hint: Assume that a rational number $\frac{r}{s}$ is a root of $f(x)$. Then, the statement $f\left(\frac{r}{s}\right)=0$ fulfills. Expand this expression and obtain from it, which are the conditions the integer numbers r and s must hold.

SOLUTION EXERCISE 5: If the polynomial $f(x)=2 x^{3}-x^{2}+8 x+1 \in \mathbb{Z}[x]$ had a rational root, using the previous Exercise 4, it would be one of the possible values: $1,-1,1 / 2$ and/or $-1 / 2$. However, $f(1) \neq 0, f(-1) \neq 0, f(1 / 2) \neq 0$ and $f(-1 / 2) \neq$ 0 . This means that $f(x)$ does not have rational roots.

SOLUTION EXERCISE 6: First of all, using the method given in Exercise 4, observe that the given polynomial $f(x)$ does not have any rational roots. On the other hand, if this polynomial $f(x)$ admitted a decomposition as a product of two polynomials of degree 2 with coefficients in \mathbb{Z}, then $f(x)$ will be expressed as $f(x)=\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$, satisfying the following conditions:

$$
b d=1, b c+d a=8, d+b+a c=-2 \text { and } a+c=0
$$

However, the previous system is incompatible, and consequently we conclude that $f(x)$ is irreducible over the field \mathbb{Q}.

SOLUTION EXERCISE 7: Let us consider the polynomial $f(x)=x^{6}-25 x^{5}+3 x^{2}+$ $12 \in \mathbb{Z}[x]$ and the prime $p=3$. Observe that $p=3$ satisfies the following properties:
(i) $3|12,3| 0,3|3,3| 0,3 \mid 0$,
(ii) $9 \nmid 12$
(iii) $3 \nmid-25$.

Then, by Eisenstein's extended criterion we conclude that the polynomial $f(x)$ admits in $\mathbb{Z}[x]$ an irreducible factor of degree 5 or 6 . In the former case, if $f(x)$ admits an
irreducible factor of degree 5 , then $f(x)$ would also admits a rational root (and this does not happen; it can be proved easily). Thus, $f(x)$ admits an irreducible factor of degree 6 in $\mathbb{Z}[x]$, and this means that $f(x)$ is irreducible over the field \mathbb{Q}.

