MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

SOLUTIONS: MATHEMATICAL LANGUAGE

SOLUTION EXERCISE 1: Assume by way of contradiction that the result is false, i.e, assume that the set S is finite. $\left.(p \wedge\rceil_{q}\right)$. Consider $S=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$. Since S is a finite set, we can compute the product of all the elements $p_{1}, p_{2}, \ldots, p_{k}$ of S. Consider now the element $b=\left(p_{1} \cdot p_{2} \ldots p_{k}\right)+1$. Therefore, there exists a prime number p^{\prime} which is a divisor of b. (Call this proposition by r.) On the other hand, since p^{\prime} is a prime number and S is the set formed by all the prime numbers, it follows that p^{\prime} belongs to the set S. However, neither of the elements of S divides the number b. It means, that p^{\prime} is not a divisor of $b(\neg r)$.
Thus, we get a contradiction: $(r \wedge\urcorner r)$, with the hypothesis S is not an infinite set. $(p \wedge\urcorner q) \Longrightarrow(r \wedge\rceil r)$, which is false. In conclusion, the set of all prime numbers S is an infinite set.

SOLUTION EXERCISE 2: It does not. For instance, the number 12 fulfills at the same time p and $7 q$, since 12 is divisible by 6 and 4 , but 12 is not divisible by 24 . Thus, p does not imply q.

SOLUTION EXERCISE 3:

(i) Basic step. First of all, notice that $p(1)$ fulfills: $2^{1} \leq 2^{1+1}$, since $2^{1}=2$, $2^{1+1}=4$, and $2 \leq 4$.
(ii) Step of induction. Prove that for all $k,[p(k) \Longrightarrow p(k+1)]$. Assume that $p(k)$ fulfills, in other words, assume that $2^{k} \leq 2^{k+1}$ (hypothesis). Now prove that $p(k+1)$ fulfills, in other words, prove that $2^{k+1} \leq 2^{k+1+1}=2^{k+2}$. To get that, multiply both sides of the previous inequality by 2 and we have that $2^{k} .2 \leq 2^{k+1} .2$, which corresponds to $2^{k+1} \leq 2^{k+2}$, as required.

SOLUTION EXERCISE 4: First of all, the statement is proved for the value $n=1$:

$$
1.1!=1=(1+1)!-1=2-1=1 .
$$

Assume now that the statement fulfills for $k \in \mathbb{N}$, i.e. assume that $1.1!+2.2!+$ $3.3!+\ldots+k . k!=(k+1)!-1$, and let us prove the statement for the value $k+1$:

$$
\begin{aligned}
& {[\mathbf{1 . 1} \cdot \mathbf{1}+\mathbf{2} \cdot \mathbf{2}!+\mathbf{3} \cdot \mathbf{3}!+\ldots+\mathbf{k} \cdot \mathbf{k}!]+(k+1) \cdot(k+1)!=(\mathbf{k}+\mathbf{1})!-\mathbf{1}+(k+1) \cdot(k+1)!=} \\
& (k+1)![1+(k+1)]-1=(k+1)!(k+2)-1=(k+2)!-1=((k+1)+1)!-1 .
\end{aligned}
$$

In this way, the statement is proved for the case $k+1$, and thus the initial statement is proved for any $n \in \mathbb{N}$.

