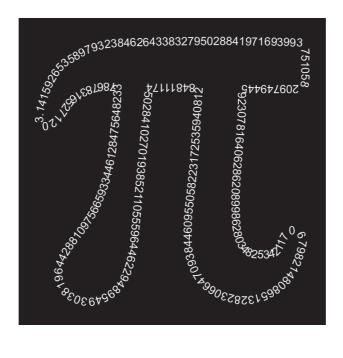


MATHS BASIC COURSE FOR UNDERGRADUATES



Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology Department of Mathematics University of the Basque Country

STATEMENTS: 6th SUBJECT. POLYNOMIALS

Exercise 1. *Prove that the polynomial* $f(x) = x^3 - 1$ *has an unique root over the field* \mathbb{R} .

Exercise 2. Calculate $gcd(x^5 - 1, x^3 + x - 2)$.

Exercise 3. Let $f(x) \in K[x]$ be a polynomial such that dg(f(x)) = 2 or 3. Prove that f(x) is irreducible over K if and only if the polynomial f(x) does not have roots over the field K.

Exercise 4. Let $f(x) = a_0 + a_1x + \dots + a_nx^n \in \mathbb{Z}[x]$ be a polynomial with coefficients over \mathbb{Z} . Assume that $dg(f(x)) \ge 2$. If the polynomial f(x) admits a rational root, prove that this root must be of type $\frac{r}{s}$, satisfying that $r \mid a_0, s \mid a_n, r, s \in \mathbb{Z}$ and gcd(r, s) = 1.

Exercise 5. Prove that the polynomial $f(x) = 2x^3 - x^2 + 8x + 1 \in \mathbb{Z}[x]$ does not have rational roots.

Exercise 6. Decompose the polynomial $f(x) = x^4 - 2x^2 + 8x + 1 \in \mathbb{Z}[x]$ as a product of irreducible factors.

Exercise 7. Decompose the polynomial $f(x) = x^6 - 25x^5 + 3x^2 + 12 \in \mathbb{Z}[x]$ as a product of irreducible factors.