




## MATHS BASIC COURSE FOR UNDERGRADUATES



## Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology Department of Mathematics University of the Basque Country



## STATEMENTS: 5th SUBJECT. CONGRUENCES

**Exercise 1.** Calculate the remainder of the following number n when it is divided by 12.

$$n = 1! + 2! + 3! + \dots + 99! + 100!.$$

**Exercise 2.** *Prove that for any*  $k \ge 1$ ,  $7 \mid (5^{2k} + 3 \cdot 2^{5k-2})$ .

**Exercise 3.** Prove that an integer number *n* expressed in decimal form is divisible by 9 if and only if the sum of its digits is divisible by 9.

**Exercise 4.** Calculate the remainder obtained dividing  $614^{6943}$  by 17.

**Exercise 5.** Solve the linear congruence  $13x \equiv 2 \pmod{31}$ .

**Exercise 6.** Prove Wilson's Theorem: If p is a prime number, then  $(p-1)! + 1 \equiv 0 \pmod{p}$ .