

MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country

STATEMENTS: 3rd SUBJECT. FUNCTIONS

Exercise 1. Let f be a function from \mathbb{R} to \mathbb{R} given by the formula $f(x) = x^2$, for any $x \in \mathbb{R}$. Calculate the following image sets and inverse images by the function f: imf, f([0,2]), $f([2,+\infty))$, $f((-\infty,-1) \cup [2,+\infty))$, $f^{-1}(1)$, $f^{-1}(-1)$, $f^{-1}([-1,0])$ and $f^{-1}((1,+\infty))$.

Exercise 2. Analyze in which domains and codomains the function f given by the expression $f(x) = x^2$ is bijective or not, and in the case it is possible, calculate which is its corresponding inverse function.

Exercise 3. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function defined by parts as follows:

$$f(x) = \begin{cases} x+3, & when \ x < -1 \\ x^2 + 1, & when \ -1 \le x \le 1 \\ x+1, & when \ x > 1 \end{cases}$$

- (i) Is the function f injective? Is f surjective?
- (ii) Calculate f([0,2]) and $f^{-1}([0,2])$.
- (iii) Consider the function g defined by the expression g(x) = |x| + 1. Calculate the composition function $f \circ g$, and latter the image set $(f \circ g)(\mathbb{R})$.

Exercise 4. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ and $g: \mathbb{R} \longrightarrow \mathbb{R}$ be two functions, given by the expressions $f(x) = x^2$ and g(x) = x + 2, respectively. In the case it is possible, calculate the following composition functions: $f \circ f$, $f \circ g$, $g \circ f$ and $g \circ g$.