

MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology Department of Mathematics University of the Basque Country

STATEMENTS: 1st SUBJECT. SET THEORY

Exercise 1. Let $A = \{1, 2, 3\}$ be a set. Say which is the relation between the sets $\{1, 2\}, \{1, 4\}$ and the set A, and calculate all the subsets of the set A.

Exercise 2. Let $A = \{1, 2, 3\}$ and $B = \{x, y\}$ be two sets. Calculate $A \times B$.

Exercise 3. Reduce the following expressions:

$$a)(A \cup B) \cup (A \cap (C \cup B))$$

 $b)(A \cap B) \cup (C \cap A) \cup (A^c \cap B^c)^c$

Exercise 4. Let A be the set formed by all the multiples of 4 and $B \subset \mathbb{N}$ the set formed by all the natural numbers whose last digit is equal to 4. Prove that $A \notin B$ and $B \notin A$.

Exercise 5. Let us define in \mathbb{Z} the following \Re relation: $m\Re n$ if and only if m-n is even.

- (i) Is \Re an equivalence relation?
- (ii) Which integer numbers are related to 2 (i.e which integer numbers are in the same equivalence class as 2)?
- (iii) Which integer numbers are related to 2008? And to -11?

Exercise 6. Let us define in \mathbb{Z} the following \Re relation: $m\Re n$ if and only if m-n is a multiple of 3.

- (i) Is \Re an equivalence relation?
- (ii) Which integer numbers are related to 3 (i.e which integer numbers are in the same equivalence class as 3)?
- (iii) Which integer numbers are related to 2013? And to -11?

Exercise 7. Let us consider in $\mathbb{Z} \times \mathbb{Z}^*$ the following equivalence relation:

$$(a,b)\Re(c,d) \iff ad = cb.$$

Express the equivalence class of any couple $(a, b) \in \mathbb{Z} \times \mathbb{Z}^*$ and calculate the associated quotient set.