

MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country

EXERCISES. STATEMENTS: MATHEMATICAL LANGUAGE

Exercise 1. Let S be the set of all prime numbers. Prove that S is an infinite set. $(p \Longrightarrow q)$.

Exercise 2. Let p be the proposition: an integer number n is divisible by 6 and by 4, and let q be the proposition: an integer number n is divisible by 24. Does p proposition imply q proposition?

Exercise 3. Prove the following p statement:

for any
$$n \in \mathbb{N}, 2^n \le 2^{n+1}$$

Exercise 4. Using the induction method, prove the following statement:

for any
$$n \in \mathbb{N}$$
, $1.1! + 2.2! + 3.3! + ... + n.n! = (n+1)! - 1$.