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7th SUBJECT: POLYNOMIAL INEQUATIONS

Definitions. Polynomial inequations. Some classical inequalites.

1 Definitions

Definition. In mathematical language, a relation between at least two elements that uses

at least one of the following signs is called inequality:

> bigger than

< smaller than

≥ bigger than or equal to

≤ smaller than or equal to.

Examples. The following expressions are inequalities, and they are read as follows:

(i) 6 > 4: 6 is bigger than 4

(ii) a > b: a is bigger than b

(iii) x < −2: the variable x takes values smaller than − 2, but not the − 2 value

(iv) 2 < x < 7: the variable x takes values between 2 and 7, but without taking the limit values

2 and 7

(v) −1 ≤ y < 3: the variable y takes values between − 1 and 3

taking − 1 as the lowest value, and leaving the highest limit, 3, out .

(vi) z2 ≥ 9: the variable z takes the values for which the square is equal or bigger than 9.

Properties. There exist the following basic rules related to the order of real numbers:

(i) If x ∈ R, one of the following three conditions is fulfilled: x > 0, x < 0 or x = 0.

(ii) If x > y, then −x < −y.

(iii) If x > y and c ∈ R, then x+ c > y + c.

(iv) If x > 0 and y > 0, then xy > 0.

(v) If x > y and y > z, then x > z.
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2 Polynomial inequations

Definition. If there are one or more variables in an inequality and if this inequality is

only fulfilled for some values of those variables, then that inequality is called inequation.

In another words, an inequation is an inequality between two algebraic expressions, and

its result is the subset of real numbers that fulfill that inequality.

Examples. The following expressions are inequations that have more than one variable.

(i) x+ y < 3: “x+ y” is smaller than 3

(ii) y − x+ 5 ≥ 0: “y − x+ 5” is bigger than or equal to 0

(iii) x+ 2y − z ≤ 4: “x+ 2y − z” is smaller than or equal to 4

(iv) x2 + y2 ≤ 25: “x2 + y2” is smaller than or equal to 25.

The first three inequations are linear, while on the other hand, the last one is not.

Remark. Graphically, in order to represent inequalities or inequations, we can use

the real number line, or depending on the number of variables, a cartesian coordinate

diagram of dimension of order 2 or 3.

Examples. These are some examples (exercises) about inequations.

(i) If a, b ∈ R and b > 0, solve the inequation |x− a| ≤ b.

(ii) Find which values of x fulfill the inequality |x− 3| < 2|x+ 3|.

Properties. Two inequations are considered equivalent if they have the same result.

Equivalent inequations can be achieved if:

(i) We add or subtract the same number on both sides of the inequality.

(ii) Multiply or divide by the same positive number on both sides.

(iii) Multiply or divide by the same negative number on both sides and then, change

the direction of the inequality.

Definition. By definition, an inequation is called linear or of first degree if on each side

there are polynomials of order one. To solve them, we follow a process that is similar to

solving first degree equations. On the other hand, second degree inequations are those

that have a polynomial of degree two in at least one of its sides, and have no polynomials

of degree three or bigger than three. To solve them, we follow the next steps:

(i) We operate until we obtain an equivalent inequation that, on one of its sides is 0.
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(ii) The polynomial left on the other side is factorized, this is, we express it in the

form: a(x− r1)(x− r2).

(iii) We calculate the signs of the three regions of the real number line delimited by

the previous two roots, and then we determine the sign of the polynomial in those

regions.

(iv) We write the solution, including or excluding the roots according to the type of the

inequality.

Remark. In the sides of a polynomial inequation, there can appear polynomials of de-

gree bigger than 2. To solve them, we follow a method that is similar to the one used for

inequations of second degree.

(i) Suppose that the polynomial found in the inequation is of the following type:

anx
n + an−1x

n−1 + · · ·+ a1x+ a0 ∼ 0,

where ∼ can be: <,>,≤, or ≥.

(ii) We calculate the roots of the equation anx
n + an−1x

n−1 + · · · + a1x + a0 = 0.

We could obtain at most n real roots; lets call them α1, . . . αn.

(iii) We place these roots in a table and then we study the sign in each region.

Example. Solve the following inequality: x3 + x ≤ 4x2 − 6.

Proof. The previous inequality is equivalent to: x3 + x − 4x2 + 6 ≤ 0, and the third

degree polynomial can be factorized as x3 + x − 4x2 + 6 = (x + 1)(x − 2)(x − 3).

Therefore, the initial inequality is equivalent to: (x + 1)(x − 2)(x − 3) ≤ 0. Now, we

analyze the signs by using the following table:

(−∞,−1) (−1, 2) (2, 3) (3,∞)

x+ 1 − + + +

x− 2 − − + +

x− 3 − − − +

(x+ 1)(x− 2)(x− 3) − + − +

Hence, x3 + x ≤ 4x2 − 6 if and only if x ∈ (−∞,−1] ∪ [2, 3].

3 Some classical inequalities

Lemma. Cauchy-Schwartz inequality. Let {ai}ni=1, {bi}ni=1 be two families of real

numbers. The following is fulfilled:

n
∑

i=1

(aibi) ≤

√

√

√

√

n
∑

i=1

a2
i

√

√

√

√

n
∑

i=1

b2
i
.
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The equality holds if and only if there exists some λ for which ai = λbi, for any i.

Proof. Suppose that

n
∑

i=1

a2i 6= 0 6=
n

∑

i=1

b2i . In other cases, for any i, ai = 0 = bi, and

the inequality is obvious. Let α, β ∈ R. Then:

0 ≤
n

∑

i=1

(αai − βbi)
2 =

n
∑

i=1

(

α2a2i + β2b2i − 2αβaibi
)

,

this is, 2αβ
n

∑

i=1

aibi ≤ α2

n
∑

i=1

a2i + β2

n
∑

i=1

b2i . Now, by taking α =

√

√

√

√

n
∑

i=1

b2
i

and β =

√

√

√

√

n
∑

i=1

a2
i
, the result is proved.

Lemma. Minkowski inequality. In the conditions of the previous lemma, the following

is fulfilled:
√

√

√

√

n
∑

i=1

(ai + bi)2 ≤

√

√

√

√

n
∑

i=1

a2
i
+

√

√

√

√

n
∑

i=1

b2
i

Proof. What we want to prove is equivalent to

n
∑

i=1

(ai + bi)
2 ≤

n
∑

i=1

a2i +

n
∑

i=1

b2i + 2

√

√

√

√

n
∑

i=1

a2
i

√

√

√

√

n
∑

i=1

b2
i
,

this is, summarizing,

n
∑

i=1

(aibi) ≤

√

√

√

√

n
∑

i=1

a2i

√

√

√

√

n
∑

i=1

b2i , and this is the result of the previous

lemma.

Lemma. Triangle inequality. Let {ai}ni=1 be a family of real numbers. Then,

|a1 + · · ·+ an| ≤ |a1|+ · · ·+ |an|.

Proof. The previous inequality is called the triangle inequality, since for the case n = 2,

if we address the sides of the triangle as a1 and a2, this inequality indicates that one

side cannot be longer than the sum of the other two. Since −|ai| ≤ ai, by adding them,

−(|a1|+ |a2|+ · · ·+ |an|) ≤ a1 + a2 + · · ·+ an ≤ |a1|+ |a2|+ · · ·+ |an|.

Lemma. Let {ai}ni=1, {bi > 0}n
i=1 be two families of real numbers. If

a1

b1
≤ a2

b2
≤ · · · ≤ an

bn
⇒ a1

b1
≤ a1 + · · ·+ an

b1 + · · ·+ bn
≤ an

bn
.
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Proof. Let us call αi =
ai

bi
. Then, α1 ≤ · · · ≤ αn. Thus,

α1b1 ≤ α1b1 ≤ αnb1

α1b2 ≤ α2b2 ≤ αnb2

. . .

α1bn ≤ αnbn ≤ αnbn

Therefore,

α1(b1 + · · ·+ bn) ≤ (a1 + · · ·+ an) ≤ αn(b1 + · · ·+ bn),

and dividing by b1+ · · ·+bn, we obtain the result. Specifically, if b1 = · · · = bn = 1, the

arithmetic mean of any family of numbers is between the lowest and the biggest numbers

of that family.

Lemma. Bernoulli’s inequality. If h is a real number bigger than -1 and n is an integer,

then (1 + h)n ≥ 1 + nh.

Proof. The proof is done by induction on n. If n = 1, then the result is immediate.

Suppose now that the result is fulfilled for n, and let us see the case for n+1. (1+h)n ≥
1+nh, and since 1+h > 0, multiplying by it, we obtain (1+h)n+1 ≥ (1+nh)(1+h) =

1+(n+1)h+nh2 ≥ 1+(n+1)h. If h > 0, instead of applying induction, it is enough

to use the binomial expansion:

(1 + h)n =

(

n

0

)

hn +

(

n

1

)

hn−1 +

(

n

2

)

hn−2 + · · ·+
(

n

n− 1

)

h+

(

n

n

)

≥
(

n

n− 1

)

h+

(

n

n

)

= nh+ 1.

Lemma. Inequality of arithmetic and geometric means. If {ai}ni=1 is a family of positive

real numbers, then

√

a2
1
+ a2

2
+ · · ·+ a2n
n

≥ a1 + a2 + · · ·+ an

n
≥ n
√
a1a2 . . . an ≥

n
1

a1
+ · · ·+ 1

an

.
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