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6th SUBJECT: POLYNOMIALS

The ring of polynomials. Divisibility. Polynomial greatest common divisor-Euclidean

algorithm. Factorization. Irreducibility criteria. Partial fraction decomposition.

1 The ring of polynomials

Definition. Let K be a field. (Generally, K will be the field Q of the rational numbers,

the field R of the real numbers or the field C of the complex numbers.) A polynomial

with coefficients in K is represented by the following expression,

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n,

where the scalars a0, a1, . . . , an are elements of K, called the coefficients of the poly-

nomial. On the other hand, the letter x is the indeterminate of the polynomial. Any two

polynomials with the same coefficients are said to be equal, and the polynomial with all

the coefficients equal to zero is said to be the null polynomial. A polynomial is said to be

constant if for any i ≥ 1, ai = 0. In addition to this, the set formed by all the possible

polynomials with coefficients in K is denoted by K[x].

Definition. Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n ∈ K[x] be a polynomial. The

biggest index i such that ai 6= 0 is called the degree of the polynomial, and it is denoted

by dg(f(x)). By agreement, the null polynomial does not have degree and the non-zero

constant polynomials are of degree zero. In addition to this, if the leading coefficient an
of a polynomial equals 1, the polynomial is said to be a monic polynomial.

Definition. Let f(x), g(x) ∈ K[x] be two polynomials expressed as f(x) = a0+a1x+

a2x
2 + · · ·+ anx

n and g(x) = b0 + b1x+ b2x
2 + · · ·+ bnx

n + · · ·+ bmxm. Assume

without any loss of generality that m ≥ n and that an 6= 0, bm 6= 0. Let us define the

following two operations in the set K[x]:

(i) Addition of polynomials:

f(x)+g(x) = (a0+b0)+(a1+b1)x+(a2+b2)x
2+· · ·+(an+bn)x

n+bn+1x
n+1+

· · ·+ bmxm

(ii) Product of polynomials:

f(x).g(x) = a0b0+(a0b1+a1b0)x+(a0b2+a1b1+a2b0)x
2+· · ·+(anbm)xn+m

=

n+m∑

j=0

(

j∑

k=0

akbj−k)x
j .
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Therefore, dg(f(x)+g(x)) ≤ max{dg(f(x)), dg(g(x))}, and dg(f(x)g(x)) = dg(f(x))+

dg(g(x)).

Theorem. Let (K,+, .) be a field. Then, (K[x],+, .) is a commutative ring with identity.

Besides, U(K[x]) = {non-zero constant polynomials} and (U(K[x]), .) has a group

structure.

2 Divisibility

Theorem. Division algorithm. Let f(x), g(x) ∈ K[x] be two polynomials such that

dg(g(x)) = m > 0 and dg(f(x)) ≥ dg(g(x)). Then, there exist two unique polynomials

q(x), r(x) ∈ K[x], such that f(x) = g(x)q(x) + r(x), with dg(r(x)) < dg(g(x)) or

r(x) = 0.

Proof. Let us define the following P set: P = {f(x) − g(x)k(x) : k(x) ∈ K[x]}.

Since the set P is not empty, let us define r(x) an element of P whose degree is the

minimum in the set P . In particular, r(x) = f(x) − g(x)q(x), for some polynomial

q(x) ∈ K[x]. Thus, f(x) = g(x)q(x) + r(x), being q(x), r(x) ∈ K[x]. Now, let us

prove that dg(r(x)) < dg(g(x)) or that r(x) = 0. First, assume that r(x) 6= 0 and

denote dg(r(x)) = n ≥ 0. We will prove that n < m. If not, n ≥ m or n−m ≥ 0. Let

us express r(x) = b0 + b1x+ · · ·+ bnx
n and g(x) = a0 + a1x+ · · ·+ amxm.

We define now the following polynomial of degree less than n:

h(x) = f(x)− g(x)q(x)−
bn
am

xn−mg(x) = r(x)−
bn
am

xn−m(a0+a1x+ · · ·+amxm)

= b0 + · · ·+ bnx
n −

bn
am

xn−m(a0 + a1x+ · · ·+ am−1x
m−1)−

bn
am

xn−mamxm.

Besides, h(x) = f(x) − g(x)(q(x) − bn
am

xn−m) ∈ P , and this contradicts the fact that

dg(r(x)) = n is the minimum degree among the elements of P . In consequence, n < m.

On the other hand, if we suppose that there exist two couples of polynomials (q1(x), r1(x))

and (q2(x), r2(x)) such that f(x) = g(x)q1(x) + r1(x), dg(r1(x)) < dg(g(x)) or

r1(x) = 0, and f(x) = g(x)q2(x) + r2(x), dg(r2(x)) < dg(g(x)) or r2(x) = 0,

then g(x)(q1(x) − q2(x)) = r2(x) − r1(x). Considering now the degrees in both sides

of the expression, it follows that dg(g(x)) + dg(q1(x)− q2(x)) = dg(r2(x)− r1(x)) ≤

max(r2(x), r1(x)) < m. Besides, if the polynomial of the of the left side is non-zero,

then its degree is≥ m+0 = m. Consequently, q1(x)−q2(x) = 0 and r1(x)−r2(x) = 0,

in other words, q1(x) = q2(x) and r1(x) = r2(x).

Definition. Let f(x), g(x) ∈ K[x] be two polynomials. We say that the polynomial f(x)

divides the polynomial g(x) or that the polynomial f(x) is a divisor of the polynomial
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g(x), if there exists some polynomial q(x) ∈ K[x] such that g(x) = f(x)q(x). The

previous mentioned concept is denoted by f(x)|g(x) or f |g.

Definition. Let f(x) = a0+a1x+a2x
2+ · · ·+anx

n ∈ K[x] be a polynomial and α ∈

K. The value of f(x) in α is reached replacing the indeterminate x of the polynomial

f(x) by α. Such obtained element of K is denoted by f(α). In particular, if f(α) = 0,

then α is said to be a zero or a root of the polynomial f(x).

Theorem. Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n ∈ K[x] be a polynomial and

α ∈ K. Then, α is a zero or a root of the polynomial f(x) if and only if the binomial

(x − α) divides the polynomial f(x). Anyway, the division between f(x) and (x − α)

has as remainder the value f(α).

Proof. =⇒) Assume that α is a root of the polynomial f(x). Thus, dg(f(x)) ≥ 1. Since

dg(x−α) = 1, from the division algorithm applied to f(x) and to (x−α), it follows that

f(x) = (x−α)q(x)+r(x), for some q(x), r(x) ∈ K[x], such that dg(r(x)) < dg(x−α)

or r(x) = 0. Assume that f(x) = (x−α)q(x)+a0. Since f(α) = (α−α)q(α)+a0 = 0,

it follows that a0 = 0 or r(x) = 0.

⇐=) Assume that (x−α) | f(x). Then, f(x) = (x−α)q(x), for some q(x) ∈ K[x],

and consequently f(α) = (α−α)q(α) = 0, in other words, α is a root of the polynomial

f(x).

Theorem. Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n ∈ K[x] be a polynomial with

dg(f(x)) = n. Then, the polynomial f(x) has at most n roots in the field K.

Proof. We prove this result by induction on n. If dg(f(x)) = 0, then the polynomial

f(x) does not have zeros (or roots). If dg(f(x)) = 1, then f(x) = ax+ b and x = − b
a

is the unique root of f(x). Assume now that dg(f(x)) = n > 1, and suppose that the

statement of the theorem holds for polynomials of degree less than n. Assume also that

the polynomial f(x) has at least a root a ∈ K. On the contrary, the statement of the

theorem holds trivially. Consider the division between f(x) and (x − a). Applying the

division algorithm, we have f(x) = (x − a)q(x) + r(x) for some q(x), r(x) ∈ K[x],

such that dg(r(x)) = 0 < dg(x − a) or r(x) = 0. Since a is a root of the polynomial

f(x), using the previous theorem, we get x−a | f(x), and consequently r(x) = 0. Thus,

f(x) = (x − a)q(x) for some q(x) ∈ K[x], such that dg(q(x)) = n − 1. Therefore,

applying the induction hypothesis to the polynomial q(x), it follows that q(x) has at most

n − 1 roots in the field K. Moreover, since the roots of f(x) in K are a and the roots

coming from the polynomial q(x), it follows that f(x) has at most 1+(n− 1) = n roots

in K.

Example. The polynomial f(x) = x3− 1 = (x− 1)(x2 + x+1) has an unique root in

R.
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3 Polynomial greatest common divisor. Euclidean algorithm

Definition. Let f(x), g(x) ∈ K[x]− {0} be two polynomials. The polynomial greatest

common divisor of those polynomials is defined as the polynomial d(x) satisfying the

following properties:

(i) d(x)|f(x) and d(x)|g(x)

(ii) if there exists l(x) ∈ K[x] such that l(x)|f(x) and l(x)|g(x), then l(x)|d(x)

(iii) d(x) is taken a monic polynomial.

In that case, it is denoted by d(x) = gcd(f(x), g(x)) or d(x) = gcd(f, g) = (f, g).

Theorem. There always exists the greatest common divisor d(x) of any two non-zero

polynomials f(x), g(x) ∈ K[x], and in the case, there exists another d′(x) satisfying the

same conditions as d(x), they must be equal. Moreover, there exist α(x), β(x) ∈ K[x]

such that gcd(f(x), g(x)) = d(x) = α(x)f(x) + β(x)g(x). This is called Bezòut’s

identity.

Proof. Let us define the following P set: P = {α(x)f(x) + β(x)g(x) | α(x), β(x) ∈

K[x]}. Note that considering α(x) = 0 and β(x) = 1, 0f(x)+1g(x) = g(x) ∈ P ; that

considering α(x) = 1 and β(x) = 0, 1f(x) + 0g(x) = f(x) ∈ P , and that considering

α(x) = 0 and β(x) = 0, 0f(x) + 0g(x) = 0 ∈ P .

Since there exist non-zero polynomials in the set P , let us choose one of minimum degree

in P . Call it d0(x) (without any loss of generality we can suppose that d0(x) is a monic

polynomial). Thus, for that polynomial d0(x) there exist α0(x), β0(x) ∈ K[x], such that

d0(x) = α0(x)f(x) + β0(x)g(x).

We claim that d0(x) = gcd(f(x), g(x)) = (f, g).

(i) First, we prove that d0(x) | f(x). (Latter, in an analogous way, d0(x) | g(x)

can be proved). Applying the division algorithm to the polynomials f(x) and d0(x), it

follows that there exist q(x), r(x) ∈ K[x], such that

f(x) = d0(x)q(x) + r(x), dg(r(x)) < dg(d0(x)) or r(x) = 0.

If we suppose that r(x) 6= 0 then,

r(x) = f(x)−(α0(x)f(x)+β0(x)g(x))q(x) = f(x)−α0(x)f(x)q(x)−β0(x)g(x)q(x)

= f(x)(1− α0(x)q(x)) + g(x)(−β0(x)q(x)) ∈ P,

and this is a contradiction with the definition of d0(x), being dg(r(x)) < dg(d0(x)) and

r(x) ∈ P . Thus, r(x) = 0 and consequently d0(x) | f(x).
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(ii) If we suppose that there exists l(x) ∈ K[x] such that l(x)|f(x) and l(x)|g(x),

we should prove that l(x)|d0(x). In fact, since l(x)|f(x), then l(x)|α0(x)f(x), and

since l(x)|g(x), then l(x)|β0(x)g(x). Thus, l(x) | α0(x)f(x) + β0(x)g(x) = d0(x), as

required.

(iii) We have chosen d0(x) as a monic polynomial.

Suppose now that there exists another d′(x) ∈ K[x] satisfying the same properties as

d0(x) (the greatest common divisor of the polynomials f(x) and g(x)). Then, since

the polynomial d0(x) satisfies the property (i), it follows that d0(x) | f(x) and that

d0(x) | g(x). Moreover, since the polynomial d′(x) satisfies the property (ii), we have

d0(x) | d
′(x). In an analogous way, since the polynomial d′(x) satisfies the property

(i), it follows that d′(x) | f(x) and d′(x) | g(x). Besides, since the polynomial d0(x)

satisfies the property (ii), we have d′(x) | d0(x). Thus, d′(x) = d0(x)c1(x) and d0(x) =

d′(x)c2(x), for some c1(x), c2(x) ∈ K[x]. In consequence, d′(x) = d′(x)c2(x)c1(x),

being c1(x) = k0 ∈ K and c2(x) = 1/k0 ∈ K, for some k0 ∈ K. Finally, since d′(x)

and d0(x) are both monic polynomials, it follows necessarily that k0 = 1 = 1/k0, in

other words, that d′(x) = d0(x).

Properties. (i) If f(x) is monic and f(x)|g(x), then gcd(f(x), g(x)) = f(x).

(ii) If f(x) = g(x)q(x) + r(x), being dg(r(x)) < dg(g(x)), then gcd(f(x), g(x)) =

gcd(g(x), r(x)).

Proof. Proof of item (ii). Denote by d(x) = gcd(f(x), g(x)). We claim that d(x) =

gcd(g(x), r(x)). Since d(x) | g(x), then d(x) | g(x)q(x), and since also d(x) | f(x), it

follows that d(x) | (f(x)−g(x)q(x)) = r(x). In particular, d(x) | g(x) and d(x) | r(x).

Assume now that there exists l(x) ∈ K[x] such that l(x) | g(x) and l(x) | r(x). Thus,

l(x) | g(x)q(x) and l(x) | (g(x)q(x) + r(x)), in other words, l(x) | f(x). On the

other hand, since l(x) | f(x), l(x) | g(x), using the second item held by d(x) =

gcd(f(x), g(x)), it holds that l(x) | d(x). Finally, since d(x) is a monic polynomial, we

have d(x) = gcd(g(x), r(x)).

Theorem. Euclidean algorithm. Let f(x), g(x) ∈ K[x]−{0} be two polynomials such

that dg(f(x)) ≥ dg(g(x)) = m > 0, and let c1(x), c2(x), . . . , cn(x), cn+1(x) ∈ K[x]

and r1(x), r2(x), . . . , rn(x) ∈ K[x] − {0} be a family of polynomials satisfying the

following properties:

f(x) = c1(x)g(x) + r1(x), dg(r1(x)) < dg(g(x))

g(x) = c2(x)r1(x) + r2(x), dg(r2(x)) < dg(r1(x))

r1(x) = c3(x)r2(x) + r3(x), dg(r3(x)) < dg(r2(x))

...
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...

rn−2(x) = cn(x)rn−1(x) + rn(x), dg(rn(x)) < dg(rn−1(x))

rn−1(x) = cn+1(x)rn(x) + rn+1(x) = cn+1(x)rn(x) + 0 = cn+1(x)rn(x).

Then, applying once and again, the previously proved (ii) property, we have gcd(f(x), g(x)) =

(f(x), g(x)) = (g(x), r1(x)) = (r1(x), r2(x)) = (r2(x), r3(x)) = · · · = (rn−1(x), rn(x))

= (rn(x), 0) = rn(x) (strictly speaking, proportional to rn(x)).

Example. gcd(x5−1, x3+x−2) = (x3+x−2, 2x2+x−3) = (2x2+x−3, 11x4 −
11
4 ) =

11x
4 − 11

4
∼= x− 1

4 Factorization

Definition. Let f(x) ∈ K[x] − {0} be a polynomial. We say that the polynomial f(x)

is irreducible over the field K, if there do not exist a couple of polynomials g(x), h(x) ∈

K[x] such that f(x) = g(x)h(x) and 1 ≤ dg(g(x)), dg(h(x)) < dg(f(x)). In a

contrary case, the polynomial f(x) is said to be reducible over the field K.

Properties. (i) Any polynomial of degree 1 with coefficients in a field K is reducible

over the field K.

(ii) If f(x) ∈ K[x] is an irreducible polynomial of degree dg(f(x)) ≥ 2, then f(x)

does not have roots in the field K.

(iii) The fact of not having roots in the field K does not imply necessarily that the

polynomial is irreducible over the field K. For instance, the polynomial f(x) =

(x2 + 1)
2
= (x2+1)(x2+1) does not have roots in R, but the polynomial f(x) is

reducible over the field R. The converse of the previous item (ii) holds necessarily

only if dg(f(x)) = 2 or 3. (We leave its proof to the reader.)

Theorem. Let f(x) ∈ K[x] be a non-constant polynomial. Then, there exist f1(x), . . . ,

ft(x) ∈ K[x] irreducible polynomials over K, such that f(x) = f1(x) . . . ft(x). In

addition to this, if there exists another decomposition for the polynomial f(x), in other

words, if f(x) = g1(x) . . . gs(x), for some irreducible polynomials over K, g1(x), . . . ,

gs(x) ∈ K[x], then s = t, and except the order or proportional constants, for any value

i, we have fi(x) = gi(x) for any i ∈ {1, . . . , s}.

Definition. Let f(x) ∈ K[x] be a non-constant polynomial. If f(x) factorizes as the

product of polynomials of degree 1, then f(x) is said to be completely decomposed in

the ring K[x].
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Definition. Let f(x) ∈ K[x] be a polynomial and α ∈ K a root of f(x). Assume that

there exists some m ∈ N, such that (x− α)m|f(x), but that the polynomial (x− α)m+1

does not divide the polynomial f(x). Then, α is said to be a root of f(x) of multiplicity

m. Moreover, if m = 1, then the root α is called a simple root, and if m > 1, the root α

is a multiple root.

Definition. Let f(x) = a0 + a1x + a2x
2 + · · · + anx

n ∈ K[x] be a polynomial. The

derivative polynomial of the polynomial f(x) corresponds to the following expression:

f ′(x) = a1+2a2x+ · · ·+nanx
n−1. Analogously, the derivative polynomials of greater

orders can be defined.

Theorem. Let f(x) ∈ K[x] be a polynomial and α ∈ K a root of f(x). Then, in the

ring K[x] the multiplicity of the root α in f(x) is m if and only if f(α) = f ′(α) = . . . =

f (m−1)′(α) = 0 and f (m)′(α) 6= 0.

Proof. We leave the proof of it to the reader.

5 Irreducibility criteria

Proposition. In this result, we analyze some criteria to determine whether a polynomial

f(x) is irreducible or not.

(i) Let f(x) ∈ K[x] be a polynomial of dg(f(x)) = 2 or 3. Then, f(x) is irreducible

over the field K if and only if f(x) does not have roots in K. (We have previously

proved this result.) For instance, the polynomial x2 + 1 is irreducible over R.

(ii) Let f(x) = a0 + a1x+ · · ·+ anx
n ∈ Z[x] be a polynomial with coefficients in Z

of dg(f(x)) ≥ 2. Then, in case, there exists a root of this polynomial f(x) in Q,

it must be of the type r
s
, such that r | a0, s | an, r, s ∈ Z and gcd(r, s) = 1. (We

leave the proof of it to the reader.)

Thus, if the polynomial f(x) = 2x3 − x2 + 8x + 1 ∈ Z[x] had a rational root,

it will be 1,−1, 1/2 or −1/2. However, f(1) 6= 0, f(−1) 6= 0, f(1/2) 6= 0 and

f(−1/2) 6= 0. In consequence, the polynomial f(x) does not have rational roots.

(iii) Gauss Lemma

Let f(x) ∈ Z[x] be a polynomial with coefficients in Z. Then, in the ring Q[x]

the polynomial f(x) can be decomposed as the product of two polynomials g(x)

and h(x) ∈ Q[x], such that 1 ≤ dg(g(x)), dg(h(x)) < dg(f(x)) if and only if in

the ring Z[x], the polynomial f(x) can be also decomposed as the product of two

polynomials with coefficients in Z of the same previous degrees, respectively.
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For instance, the polynomial f(x) = x4 − 2x2 + 8x + 1 ∈ Z[x] does not have

rational roots. On the other hand, if this polynomial f(x) admitted a decomposi-

tion as a product of two polynomials of degree 2 with coefficients in Z, then f(x)

will be expressed as f(x) = (x2 + ax+ b)(x2 + cx+ d), satisfying the following

conditions:

bd = 1, bc+ da = 8, d+ b+ ac = −2 and a+ c = 0.

However, the previous system is incompatible, and consequently we conclude that

f(x) is irreducible over the field Q.

(iv) Eisenstein’s extended criterion. Let p ∈ N be a prime number and f(x) =

a0 + a1x+ · · ·+ anx
n ∈ Z[x] be a polynomial. Assume that,

(a) p | a0, p | a1, . . . , p | ar−1, for 1 ≤ r ≤ n,

(b) p2 ∤ a0,

(c) p ∤ ar.

Then, the polynomial f(x) has an irreducible factor of degree r or greater than r

in the ring Z[x]. In the particular case r = n, then f(x) is also irreducible over

the field Q.

For instance, let us consider the polynomial f(x) = x6−25x5+3x2+12 ∈ Z[x]

and the prime p = 3. We have,

(a) 3 | 12, 3 | 0, 3 | 3, 3 | 0, 3 | 0,

(b) 9 ∤ 12

(c) 3 ∤ −25.

Then, the polynomial f(x) admits in Z[x] an irreducible factor of degree 5 or 6. In

the former case, if f(x) admits an irreducible factor of degree 5, then f(x) would

have also a rational root (and this does not happen; it can be proved easily). Thus,

f(x) admits an irreducible factor of degree 6 in Z[x], and this means that f(x) is

irreducible over the field Q.

6 Partial fraction decomposition

In this section we will describe an operation that consists in expressing a rational fraction

as a sum of a polynomial (possibly zero) and one or several fractions with a simpler

denominator.
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Theorem. Let f(x), g(x) ∈ K[x] be two polynomials, such that g(x) can be decom-

posed as the product of two polynomials which are coprimes (i.e. g(x) = p(x)q(x) such

that (p(x), q(x)) = 1), and with dg(f(x)) ≥ dg(g(x)). Then, the fraction f(x)/g(x)

can be expressed in an unique form as follows,

f(x)

g(x)
= h(x) +

u(x)

q(x)
+

v(x)

p(x)
,

h(x), u(x), v(x) ∈ K[x], dg(u(x)) < dg(q(x)), dg(v(x)) < dg(p(x)).

Proof. First of all, we prove that there exists an expression of this type. Using the

division algorithm, we have that there exist two polynomials h(x), r(x) ∈ K[x], such

that f(x) = h(x)g(x) + r(x) and dg(r(x)) < dg(g(x)).

In particular,
f(x)
g(x) = h(x) + r(x)

g(x) .

Since gcd(p(x), q(x)) = 1, by applying Bezòut’s identity there exist two polynomials

ρ(x), φ(x) ∈ K[x] such that ρ(x)p(x) + φ(x)q(x) = 1. Now, multiplying the previous

expression by r(x), we get that r(x)ρ(x)p(x) + r(x)φ(x)q(x) = r(x). Latter, we apply

the Euclidean division to r(x)ρ(x) and to q(x).

So, r(x)ρ(x) = α(x)q(x) + u(x), being dg(u(x)) < dg(q(x)) and α(x), u(x) ∈

K[x]. Thus, (α(x)q(x) + u(x))p(x) + r(x)φ(x)q(x) = u(x)p(x) + (α(x)p(x) +

r(x)φ(x))q(x) = r(x), and consequently, calling v(x) = α(x)p(x) + r(x)φ(x), it fol-

lows that u(x)p(x)+v(x)q(x) = r(x). Finally, we will prove that dg(v(x)) < dg(p(x))

(note that at this point we are done).

In fact,

dg(v(x)q(x)) = dg(r(x)− u(x)p(x)) ≤ max(dg(r(x)), dg(u(x)p(x)))

< dg(q(x)p(x)) = dg(g(x)).

Observe that in the previous inequalities we have used, dg(u(x)) < dg(q(x)), g(x) =

p(x)q(x) and dg(r(x)) < dg(g(x)).

Finally, since the constructions made for the mentioned expression are basically unique,

the found expression can be considered unique. Otherwise, if there would be another ex-

pression, considering the difference between these two expressions, it is enough to prove

that the unique expression for the null polynomial is obtained through the polynomials

h(x) = u(x) = v(x) = 0.

Corollary. Let f(x), g(x) ∈ K[x] be two polynomials, such that g(x) 6= 0. Let g(x) =

p1(x)
e1 · · · pt(x)

et be the decomposition of the polynomial g(x) in terms of irreducible

different factors. Then, the rational function f(x)/g(x) can be expressed in an unique

form as follows:
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f(x)

g(x)
= h(x) +

u11(x)

p1(x)
+ · · ·+

u1e1(x)

p1(x)
e1 + · · ·+

ut1(x)

pt(x)
+ · · ·+

utet(x)

pt(x)
et ,

uij ∈ K[x], dg(uij(x)) < dg(pi(x)).

Proposition. Let u(x), p(x) ∈ K[x] be two polynomials, such that p(x) 6= 0. Then, the

polynomial u(x) can be expressed in an unique form using the polynomial p(x) as basis,

as follows:

u(x) = u0(x) + u1(x)p(x) + u2(x)p(x)
2 + · · ·+ ut(x)p(x)

t, dg(ui(x)) < dg(p(x)).

Proof. The proof is left to the reader.
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