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4th SUBJECT: DIVISIBILITY

1 Integer numbers

In Number Theory, one of the basic concepts is the idea of divisibility. Thus, the main

idea of this subject is the divisibility with remainder of integer numbers.

Definition. Let a, b ∈ Z. By definition a is said to be divisible by b, and it is written in

the form a | b, if there exists c ∈ Z such that b = ac. In that case, it is said that a is a

divisor of b, b is a multiple of a or that b can be divided by a. When this relation is not

fulfilled, we can express it as a ∤ b.

The following properties are immediate:

Properties. Let a, b, c ∈ Z. Then:

(i) a | b if and only if |a| | |b|, where |x| =
{

x, x ≥ 0

−x, x < 0

(ii) a | 0 and 1 | a

(iii) a | 1 if and only if a = ±1

(iv) a | a

(v) if a | b and b | a, then a = ±b

(vi) if a | b and b | c, then a | c

(vii) if a | b and a and b are both positive integer numbers, then a ≤ b

(viii) if a | b and a | c, then a | (bx− cy), for any x, y ∈ Z.

2 Division Algorithm

Proposition. Let a and b be two integer numbers, such that b 6= 0. Then there exist two

unique integer numbers q and r such that a = qb + r, with 0 ≤ r < |b|. In that case, q

is called the quotient and r the remainder.

Proof. Let us take the rational number a
b

(if a and b have opposite signs, the negative

sign is associated to a and the proof is carried for b > 0). There exists an integer

q for which q ≤ a
b

< q + 1. Multiplying the previous expression by b, we obtain

qb ≤ a < (q + 1)b. Hence, r = a − qb, and it can be noticed that the previously

mentioned properties fullfill.
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Remark. The next properties are immediate:

(i) If r = 0, a is divisible by b.

(ii) The condition 0 ≤ r < |b| characterizes the division algorithm. An expression

like 21 = (−3)(−5) + 6 is not a consequence of the division algorithm.

(iii) If we fix b, the amount of possible remainders is finite. More precisely, the remain-

der could be 0, 1, 2, . . . , |b| − 1.

Exercise. The square of any integer number a has the form 3k or 3k + 1. This is, if we

divide a2 by 3, the remainder will be 0 or 1.

Proof. If a is divided by 3, all the possible remainders are 0, 1 or 2. This is, there exist

three possibilities:

(i) if a = 3q, then a2 = 9q2 = 3(3q2) = 3k;

(ii) if a = 3q + 1, then a2 = 9q2 + 6q + 1 = 3(3q2 + 2q) + 1 = 3k + 1;

(iii) if a = 3q + 2, then a2 = 9q2 + 12q + 4 = 3(3q2 + 4q + 1) + 1 = 3k + 1.

3 Numeral systems

The simplest way to address numbers is the decimal system, which uses the digits 0, 1,

2, 3, 4, 5, 6, 7, 8 and 9. For example, 108 is addressed by the following sum:

1 · 102 + 0 · 101 + 8 · 100.

Remark. In this subject, we are only going to work with integer numbers, but in general,

if the number has a coma, the first digit after the coma is multiplied by 10−1, the second

one by 10−2, etc.

However, there is no reason to restrict always to the decimal system. For example,

computers can use octal number systems (multiples of 8), or hexadecimal systems (mul-

tiples of 16). In order to perform operations, a computer decomposes the number 108 in

powers of two:

(E1)108 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 0 · 20.

If we express 108 in powers of 4, we obtain the following:

108 = 1 · 43 + 2 · 42 + 3 · 41 + 0 · 40,

which is addressed by (1230)4. And in base 9:

108 = 1 · 92 + 3 · 91 + 0 · 90,

this is, (130)9. To obtain these expressions, the division algorithm is used.
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Remark. Notice that:

108 = 3 · 25 + 0 · 24 + 0 · 23 + 3 · 22 + 0 · 21 + 0 · 20.

A particularity of the first way (E1) to express the number 108:

108 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 1 · 22 + 0 · 21 + 0 · 20

is that all coefficients are smaller than 2.

Proposition. Let b ≥ 2 (b ∈ N), which we call base. Any natural number n ∈ N can be

written, in a unique manner, as a combination of powers of b:

n = ambm + am−1b
m−1 + · · ·+ a2b

2 + a1b+ a0,

with 0 ≤ ai < b for any i, and with am 6= 0. Thus, we can express the number n as:

n = (amam−1 . . . a2a1a0)b.

Proof. The division algorithm has to be applied repeatedly. First, n = n1b + a0; later

n1 = n2b+ a1, and we follow until we reach an expression like nm−1 = nmb+ am−1,

(being am−1 < b). Using these expressions and substituting in n = n1b+ a0 we obtain:

n = (((nmb+am−1 . . . )b+a2)b+a1)b+a0 = nmbm+am−1b
m−1+· · ·+a2b

2+a1b+a0.

Exercise. How can we change from the base b to the base 10?

For example, (3043)5 = 3 · 53 + 0 · 52 + 4 · 5 + 3 = 398.

Exercise. How can we change from the base 10 to the base b?

For example, to express 1025 in the base 7, we divide it by 7 and we get

1025 = 146 · 7 + 3.

Next, 146 = 20 · 7 + 6 and 20 = 2 · 7 + 6. Thus,

1025 = 146 · 7 + 3 = (20 · 7 + 6) · 7 + 3 = ((2 · 7 + 6) · 7 + 6) · 7 + 3,

and by subtracting the common factors:

1025 = 2 · 73 + 6 · 72 + 6 · 7 + 3 = (2663)7.

Remark. In the hexadecimal system, we need 16 digits. Therefore, to the digits 0, 1, 2,

..., 9, we add the letters A (=10), B (=11), C (=12), D (=13), E (=14) and F (=15).

Exercise. How can we change from base 10 to base 16?
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For example, 3027 = 189 · 16 + 3 and 189 = 11 · 16 + 13, and consequently 3027 =

(BD3)16.

Definition. Let a and b be two integer numbers, such that at least one of them is nonzero.

The greatest common divisor of a and b, which is denoted by gcd(a, b), is the unique

positive integer number d fulfilling the following properties:

(i) d | a and d | b

(ii) if c | a and c | b, then c | d.

Exercise. gcd(−12, 18) = 6.

The divisors of −12 are ±1, ±2, ±3, ±4, ±6 and ±12, and the divisors of 18 are

±1, ±2, ±3, ±6 and ±18.

Remark. The following properties are fulfilled:

(i) gcd(a, b) = gcd(b, a);

(ii) gcd(a, b) exists and it is finite;

(iii) gcd(a, b) is always positive. In fact, gcd(a, b) = gcd(−a, b) = gcd(a,−b) =

gcd(−a,−b) = gcd(|a|, |b|);

(iv) gcd(a, 0) = |a|.

Proposition. If a and b are two integer numbers (at least one of them is nonzero), then

there exist two numbers x0 and y0 for which gcd(a, b) = ax0+ by0. This last expression

is called Bezout’s identity.

Proof. Let us define the set C = {ax + by : ax + by > 0, x, y ∈ Z}. Clearly C ⊆ N

and C is nonempty (for instance, a2 + b2 ∈ C). Since C is an ordered set, let us call its

first element d; in other words, there exist x0, y0 ∈ Z for which d = ax0 + by0. Now let

us see that d is the greatest common divisor of a and b.

1) Using the division algorithm, we can write a = qd+ r, being 0 ≤ r < d. Thus,

r = a− qd = a− q(ax0 + by0) = a(1− qx0) + b(−qy0).

If r > 0, then r ∈ C and r < d, and this is contrary to the definition of d. Therefore,

r = 0, and consequently d | a. Analogously, it can be proved that d | b.
2) If c | a and c | b, we know that c divides any linear combination of a and b, and

hence, c | d.

Remark. The previous linear combination is not unique. For example, 3 = gcd(6, 9) =

6 · (−1) + 9 · 1 = 6 · 5 + 9 · (−3).
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Definition. If a and b are two nonzero integers, these numbers are called coprimes if

they fulfill gcd(a, b) = 1.

Corollary. Let a and b be two nonzero integer numbers. These numbers are coprimes if

and only if there exist x0, y0 ∈ Z for which 1 = ax0 + by0 is fulfilled.

Exercise. If a | bc and gcd(a, b) = 1, then a | c.

Proposition. If a = qb+ r, then gcd(a, b) = gcd(b, r).

Proof. Let us call d = gcd(a, b). Since r is an integer combination of a and b, it follows

that d | r. In addition to this, d is also the greatest common divisor of b and r. In fact, if

there exists c such that c | b and c | r, then c | a, and consequently c | d, as we desired.

Exercise. Calculate gcd(1479, 272).

We divide the number 1479 by 272 (1479 = 5 · 272 + 119). Thus,

gcd(1479, 272) = gcd(272, 119).

By repeating the same operation, 272 = 2 · 119 + 34. Hence,

gcd(1479, 272) = gcd(272, 119) = gcd(119, 34).

Again, 119 = 3 · 34 + 17, and consequently

gcd(1479, 272) = gcd(272, 119) = gcd(119, 34) = gcd(34, 17).

Finally, 34 = 2 · 17 + 0. Therefore,

gcd(1479, 272) = gcd(272, 119) = · · · = gcd(17, 0) = 17.

4 Euclidean algorithm

Let a, b ∈ Z. Without any loss of generalization, we can assume that these numbers are

positive, since gcd(a, b) = gcd(|a|, |b|). Suppose that a ≥ b. Dividing a by b we obtain,

a = q1b+ r1, where 0 ≤ r1 < b.

We know that gcd(a, b) = gcd(b, r1). If r1 = 0, then gcd(a, b) = gcd(b, r1) = b, and

we have finished. In the other case, we divide b by r1:

b = q2r1 + r2, such that 0 ≤ r2 < r1.
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It holds gcd(a, b) = gcd(b, r1) = gcd(r1, r2). If r2 = 0, then gcd(a, b) = gcd(r1, r2) =

r1, and we have finished. If not, we divide r1 by r2:

r1 = q3r2 + r3, such that 0 ≤ r3 < r2.

The process continues until we reach a division by 0, which is achieved by a finite

number of divisions, since r1 > r2 > r3 > · · · ≥ 0. If the first division with remainder

equal to 0 is the (n+ 1)-th division, then

rn−1 = qn+1rn + 0,

and gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn−1, rn) = gcd(rn, 0) = rn.

How can we use Euclidean algorithm to achieve Bezout’s identity?

a = q1b+ r1, such that 0 ≤ r1 < b

b = q2r1 + r2, such that 0 ≤ r2 < r1

r1 = q3r2 + r3, such that 0 ≤ r3 < r2

. . .

rn−3 = qn−1rn−2 + rn−1, such that 0 ≤ rn−1 < rn−2

rn−2 = qnrn−1 + rn, such that 0 ≤ rn < rn−1

rn−1 = qn+1rn + 0.

Isolating rn from the previous equality, we obtain rn = rn−2 − qnrn−1, this is, a linear

combination of rn−2 and rn−1. From the previous equality, isolating again rn−1,

rn−1 = rn−3 − qn−1rn−2, a linear combination of rn−3 and rn−2 is obtained.

Now substituting on the previous expression, rn is addressed as a linear combination of

rn−3 and rn−2:

rn = rn−2 − qn(rn−3 − qn−1rn−2).

Proceeding in this way, we can address rn as a linear combination of a and b.

Exercise. Address gcd(1479, 272) as a linear combination of 1479 and 272.

1479 = 5 · 272 + 119,

272 = 2 · 119 + 34,

119 = 3 · 34 + 17,
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34 = 2 · 17 + 0.

Then, gcd(1479, 272) = 17. And,

17 = 119− 3 · 34 = 119− 3 · (272− 2 · 119) =

7 · 119− 3 · 272 = 7 · (1479− 5 · 272)− 3 · 272 = 7 · 1479− 38 · 272.

Proposition. For any integer number k 6= 0, gcd(ka, kb) = |k|gcd(a, b).

Proof. If k > 0, we have to prove that gcd(ka, kb) = k.gcd(a, b). We have to compare

the resulting column of applying Euclidean algorithm to the positive numbers ka and

kb with the column obtained by applying the same algorithm to the numbers a and b.

The first column is obtained by multiplying the second one by k. In particular, the last

nonzero remainder obtained in the first column is the last nonzero remainder obtained

in the second column multiplied by k.

On the other hand, if k < 0, we have to prove that gcd(ka, kb) = −k.gcd(a, b). Ho-

wever,

gcd(ka, kb) = gcd(|k|a, |k|b) = |k|gcd(a, b) = −k.gcd(a, b).

Corollary. If gcd(a, b) = d, then a = da′ and b = db′, such that gcd(a′, b′) = 1.

There exists another concept similar to the greatest common divisor of two numbers.

Definition. If a and b are two nonzero integer numbers, the least common multiple of

a and b, which is denoted by lcm(a, b), is the unique integer number m satisfying the

following two properties:

(i) a | m and b | m

(ii) if a | c and b | c, then m | c.

Remark. The following properties are fulfilled:

(i) lcm(a, b) = lcm(b, a);

(ii) lcm(a, b) always exists;

(iii) lcm(a, b) is always positive. In fact, lcm(a, b) = lcm(−a, b) = lcm(a,−b) =

lcm(−a,−b) = lcm(|a|, |b|).

Proposition. If a and b are two integers, then gcd(a, b) · lcm(a, b) = |ab|.

Proof. If a = 0 or b = 0 the result is trivial. In other case, since gcd(a, b) and lcm(a, b)

are always positive, we can suppose that a > 0 and b > 0. Let us denote d = gcd(a, b).
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Then a = da′ and b = db′ (a′ and b′ are coprimes). Let us call m = ab
d

. We have to

prove that m = lcm(a, b).

i) m is a multiple of a, since m = ab′, and also a multiple of b, since m = a′b.

ii) If c > 0 is a common multiple of a and b, there exist two integer numbers r and s

for which c = ar = bs. Now, by Bezout’s identity, there exist two integer numbers x0, y0

such that d = ax0 + by0. Dividing c by m = ab
d

, we obtain the following:

c

m
=

cd

md
=

cd

ab
=

c(ax0 + by0)

ab
=

c

b
x0 +

c

a
y0 = sx0 + ry0,

which is in fact an integer number. Hence, m | c.

5 Prime numbers and Sieve of Eratosthenes

Definition. An integer number p > 1 is said to be prime if its only positive divisors are

1 and p. On the contrary, the number is said to be composed.

Remark. The following properties are fulfilled:

(i) Any integer number n accepts 1 and n as divisors,

(ii) 1 is not prime,

(iii) 2 is the smallest prime, and the only one that is even,

(iv) a prime number p cannot be decomposed as p = ab with 1 < a < p and 1 < b <

p,

(v) if p is a prime number and a is any integer number, then

gcd(a, p) =

{

p if p | a
1 if p ∤ a

Proposition. If p is a prime and a and b are two integer numbers such that p | ab, then

p | a or p | b.

Proof. If p ∤ a, then gcd(a, p) = 1. And consequently, p | b.

Remark. The previous result only happens for prime numbers. For instance, 6 | 2 · 3,

but 6 ∤ 2 and 6 ∤ 3.

Corollary. Pythagorean Theorem.
√
2 is an irrational number.
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Proof. By way of contradiction, if we suppose that
√
2 is a rational number, then it

would be of the type
√
2 = a

b
, being a and b integer numbers and b > 0. If it was

necessary, simplifying the fraction, let us suppose that a and b are coprimes. Raising to

the power of two, we have that 2b2 = a2, and consequently 2 | a2 = aa. Now, since 2 is

prime, we obtain that 2 | a. In other words, there exists an integer number r for which

a = 2r. Substituting, we get 2b2 = a2 = 4r2, this is, b2 = 2r2, and then, 2 | b, which is

a contradiction, since a and b are coprime numbers.

Corollary. If p is a prime, a1, . . . , an are integer numbers and p | a1 . . . an, then p | ai,
for some i ∈ {1, . . . , n}.

Corollary. If p is a prime and for the prime numbers p1, . . . , pn the following statement

p | p1 . . . pn is fulfilled, then p, must be one of the factors p1, . . . , pn.

When the natural number (integer and positive) n is big, finding all the primes smaller

or equal to it is a difficult problem. The Sieve of Eratosthenes addresses a method to find

all the prime numbers that are smaller or equal to n, when n is small.

First we write all the integers between 2 and n; then, we erase all the even numbers after

2 (this is, we erase the multiples of 2); then, we erase all the multiples of 3 greater 3,

since they are not primes. In this second round, we erase again certain numbers that

were already erased. Next, we do the same process with any number after 5 which is

a multiple of 5. The process is finished when we erase all the multiples of the prime

number p, being p ≤ √n.

Thus, the remaining numbers are all the primes that are smaller or equal to the initial

number n.
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6 Fundamental theorem of arithmetic

Theorem. Any integer number n > 1 can be written as a product of certain prime

numbers. In addition, this decomposition is unique, except for the order of its factors.

Proof. i) Existence of the factorization. Suppose that S is the set of the integer num-

bers that cannot be written as a product of prime numbers bigger than 1. By way of

contradiction, let us suppose that S is not empty, and denote as a the first element of

the set S. By construction, a cannot be a prime ( a non composed) number: otherwise,

it could not be in S. Thus, a = mn, being 1 < m < a and 1 < n < a. Besides,

since a is the smallest element of S, m 6∈ S and n 6∈ S. This is, m and n can be

expressed as a product of prime numbers; say m = p1p2 . . . pr and n = q1q2 . . . qs.

Then, a = p1p2 . . . prq1q2 . . . qs is indeed a product of primes, which is a contradiction.

Hence, S = ∅.
2) Uniqueness except for the order. Suppose that n can be factorized as two differ-

ent expressions: n = p1p2 . . . pr and n = q1q2 . . . qs, and that in each case, the primes

are ordered decreasingly: p1 ≤ p2 ≤ · · · ≤ pr and q1 ≤ q2 ≤ · · · ≤ qs. We have to

prove that r = s, and that for each index pi = qi.

Since n = p1p2 . . . pr = q1q2 . . . qs, it follows that p1 divides q1q2 . . . qs, and conse-

quently p1 = qk, for some k. Specifically, p1 ≥ q1. Analogously, since q1 divides

p1p2 . . . pr, we deduce that q1 = pi for a certain i, and in particular, q1 ≥ p1. There-
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fore, p1 = q1.

Now by eliminating the previous factor in the factorization of n, we obtain p2 . . . pr =

q2 . . . qs. Repeating the same reasoning, we obtain that p2 = q2. Thus, p3 . . . pr =

q3 . . . qs.

If we assume that r < s, then by doing the successive eliminations, we would obtain

1 = qr+1qr+2 . . . qs, and we get a contradiction, since all the primes of the factorization

are bigger than 1.

Remark. If n < −1, since −n > 1, we have the factorization −n = p1p2 . . . pr, and

then, n = −p1p2 . . . pr.

Besides, in this kind of factorizations, prime numbers can appear repeated, and if we

group together these repeated primes, we obtain the canonical factorization of the inte-

ger number n.

Theorem. Any integer n 6= 0,±1 can be addressed in a single form, as follows:

n = ±pk11 pk22 . . . pkrr ,

being p1 < p2 < · · · < pr prime numbers and the indexes ki > 0.

Proposition. If n = pk11 pk22 . . . pkrr , where p1 < p2 < · · · < pr are primes, all the

indexes ki are positive, and m | n, then m = ph1

1 ph2

2 . . . phr

r , where hi ≤ ki, for any

value of i.

Proof. If m | n, then n = cm, being c an integer. By taking the factorization of the inte-

ger numbers in prime numbers, we have that m = qh1

1 qh2

2 . . . qhs

s and c = rl11 r
l2
2 . . . rltt .

Then,

pk11 pk22 . . . pkrr = qh1

1 qh2

2 . . . qhs

s rl11 r
l2
2 . . . rltt .

Now from the Fundamental theorem of arithmetic, we know that the prime numbers and

the powers of them that appear in both sides of the equation must be equal. Hence, in

particular, each qj must be equal to some pi, and its power hj ≤ ki.

Finally, we finish this subject saying that this previous factorization technique can be

applied to calculate the greatest common divisor and the least common multiple of two

integer numbers, avoiding the use of the Euclidean algorithm (although the Euclidean

algorithm is numerically more efficient), as follows:

Proposition. If n = pk11 pk22 . . . pkrr and m = ph1

1 ph2

2 . . . phr

r , where p1 < p2 < · · · < pr

are prime numbers and ki, hi ≥ 0, for any index, then

(i) gcd(m,n) = p
min(k1,h1)
1 p

min(k2,h2)
2 . . . p

min(kr,hr)
r ;

(ii) lcm(m,n) = p
max(k1,h1)
1 p

max(k2,h2)
2 . . . p

max(kr,hr)
r ;

(iii) mn = lcm(m,n) · gcd(m,n).
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