

MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country

2nd SUBJECT: COMPLEX NUMBERS

Operations. Conjugate. Polar form. Solutions of polynomial equations. Fundamental theorem of algebra.

It is known that the equation $x^2 + 1 = 0$ has no real roots. If we denote by i the number fulfilling $i^2 = -1$ relationship, by definition we call *complex number* to the expression z = a + ib, where $a, b \in \mathbb{R}$, being a = Re(z) the *real part* of the complex number z, and b = Im(z) the *imaginary part* of the complex number z.

It can be noticed that the real number $a \in \mathbb{R}$ can be identified by the complex number a = a + i0. Thus, it can be easily figured out that $\mathbb{R} \subseteq \mathbb{C}$. Sometimes, the complex number z = a + ib (this mode is called the *binomial form of the complex number*), can be identified with the pair $(a,b) \in \mathbb{R}^2$, and therefore we can speak about the *complex plane*.

1 Operations

Let $a, b, c, d \in \mathbb{R}$.

Addition

$$(a+ib) + (c+id) = (a+c) + i(b+d)$$

Subtraction

$$(a+ib) - (c+id) = (a-c) + i(b-d)$$

Product

Since $i^2 = -1$, the following can be concluded

$$(a+ib).(c+id) = (ac-bd) + i(ad+bc)$$

Division

$$\frac{a+ib}{c+id} = \frac{(a+ib)(c-id)}{(c+id)(c-id)} = \frac{(ac+bd)+i(bc-ad)}{c^2+d^2}$$
in the case $c+id \neq 0$

2 Conjugate

If z = a + ib is a complex number, the number $\overline{z} = a - ib$ is called its *conjugate*. In \mathbb{R}^2 , if we denote as |z| the distance between the origin and the point (a, b), then by applying

Pythagoras' Theorem, we obtain $|z| = \sqrt{a^2 + b^2}$. Also notice that $z.\overline{z} = |z|^2$.

3 Polar form

If z=a+ib, the angle θ formed by the 0X axis and the line passing through the origin and z is called the *argument* of the complex number z, which is denoted by arg(a+ib). Therefore, by using basic trigonometrical concepts, $a=r\cos\theta$, $b=r\sin\theta$ and we obtain $arg(a+ib)=arctag\frac{b}{a}$, being r=|z|.

The complex number z can also be addressed as,

$$z = r(\cos\theta + i\sin\theta)$$
.

Notice that for the argument $\arg(z)$, there is only one value between $-\pi < \theta \le \pi$, which is called the *principal value*. In addition, we call the *polar form* of the complex number $z = a + bi \ne 0$ to the expression r_{θ} , where r = |z| is the module of z = a + bi, and θ is the argument of z = a + ib.

Example. $3i = 3_{\pi/2}$; $1 + i = (\sqrt{2})_{\pi/4}$ and $-1 - i = (\sqrt{2})_{5\pi/4}$.

Theorem. (*Moivre*.) If $z_1 = r_1 (\cos \theta_1 + i \sin \theta_1)$ and $z_2 = r_2 (\cos \theta_2 + i \sin \theta_2)$, then $z_1 z_2 = r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2))$.

Proof.

$$z_1 z_2 = r_1 r_2 (\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2) =$$

$$= r_1 r_2 ((\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2)) =$$

$$= r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)).$$

Corollary. If $z = r(\cos \theta + i \sin \theta)$, then $z^n = r^n(\cos n\theta + i \sin n\theta)$, and $z^{-n} = r^{-n}(\cos n\theta - i \sin n\theta)$.

Proof. It is enough to notice that

$$z^{-1} = \frac{1}{z} = \frac{1}{r(\cos\theta + i\sin\theta)} = \frac{\cos\theta - i\sin\theta}{r}.$$

Example.
$$(2_{\pi/3})^3 = 8_{\pi}$$
, $\frac{2_{\pi/3}}{\sqrt{3_{\pi/4}}} = (\frac{2}{\sqrt{3}})_{\pi/3 - \pi/4} = (\frac{2}{\sqrt{3}})_{\pi/12}$.

Example. Calculate $(-\sqrt{3}+i)^7$. Notice that the complex number $z=-\sqrt{3}+i$ can also be written as $z=2(\cos\frac{5\pi}{6}+i\sin\frac{5\pi}{6})$. Thus,

$$z^7 = 2^7 \left(\cos \frac{35\pi}{6} + i\sin \frac{35\pi}{6}\right) = 2^7 \left(\cos \frac{-\pi}{6} + i\sin \frac{-\pi}{6}\right) = 2^7 \left(\frac{\sqrt{3}}{2} + i\frac{-1}{2}\right) = 2^6 \left(\sqrt{3} - i\right).$$

Example. Find the formula for $cos(3\theta)$ depending on $cos \theta$.

First, we have that $\cos 3\theta + i \sin 3\theta = (\cos \theta + i \sin \theta)^3$. Then, by raising it to the third power and by matching the real parts and the imaginary parts, we conclude that $\cos 3\theta = 4 \cos^3 \theta - 3 \cos \theta$.

4 Solutions of polynomial equations

For ease of use, complex numbers are represented by the exponential notation, which is $e^{i\theta}=\cos\theta+i\sin\theta$. With this notation, if $z=re^{i\theta}$, then $\overline{z}=re^{-i\theta}$. Besides, $z_1=r_1e^{i\theta_1}=r_2e^{i\theta_2}=z_2$ if and only if $r_1=r_2$ and $\theta_1=\theta_2+2k\pi$, being $k\in\mathbb{Z}$.

For example, if we want to solve the equation $z^3=1$, we can use the following decomposition:

$$0 = z^3 - 1 = (z - 1)(z^2 + z + 1),$$

where $1, -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ and $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$ are the roots, also written as $1, e^{i\frac{2\pi}{3}}$ and $e^{i\frac{4\pi}{3}}$, and which are called *the cube roots of unity*.

In general, if a complex number z fulfills the equation $z^n = 1$, this number is called an n-th root of unity.

Proposition. If $n \in \mathbb{N}$ and $w = e^{i\frac{2\pi}{n}}$, then the n-th roots of unity are $1, w, w^2, \ldots$, and w^{n-1}

Proof. Let $z=re^{i\theta}$ be one n-th root of unity. Then, $z^n=r^ne^{in\theta}=1$, and we infer that r=1 and $n\theta=2k\pi$ (being $k\in\mathbb{Z}$). Thus, $\theta=\frac{2k\pi}{n}$ and $z=e^{i\frac{2k\pi}{n}}=w^k$. Therefore, each n-th root of unity is a power of w. Viceversa, each power of w is an n-th root of unity, because $(w^k)^n=w^{kn}=(e^{i\frac{2\pi}{n}})^{kn}=(e^{i2\pi})^k=1$.

Example. The 4-th roots of unity are $1, e^{i\frac{\pi}{2}}, e^{i\pi}$ and $e^{i\frac{3\pi}{2}}$, also written as 1, i, -1, -i. The 6-th roots of unity are $1, e^{i\frac{\pi}{3}}, e^{i\frac{2\pi}{3}}, -1, e^{i\frac{4\pi}{3}}$ and $e^{i\frac{5\pi}{3}}$, and they are the vertices of a regular hexagon inscribed in a circle.

On the other hand, we can use the n-th roots of unity to calculate the n-th roots of any complex number.

Example. Solve the equation $z^5 = -\sqrt{3} + i$. This is, calculate the fifth roots of the complex number $-\sqrt{3} + i$.

To do this, use the notation $z_0 = -\sqrt{3} + i = 2e^{i\frac{5\pi}{6}}$. Thus, $\alpha = 2^{\frac{1}{5}}e^{i\frac{\pi}{6}}$ can be a fifth root of z_0 . If w is a fifth root of unity, then $(\alpha.w)^5 = \alpha^5w^5 = \alpha^5 = z_0$. Therefore, $\alpha.w$ is also a fifth root of z_0 . Consequently, the fifth roots of $z_0 = -\sqrt{3} + i$ are:

$$\alpha, \alpha e^{i\frac{2\pi}{5}}, \alpha e^{i\frac{4\pi}{5}}, \alpha e^{i\frac{6\pi}{5}}, \alpha e^{i\frac{8\pi}{5}}$$

In fact, there are five roots which are roots of z_0 . If β is another fifth root of z_0 , then $\beta^5 = \alpha^5 = z_0$, and from here we obtain $\frac{\beta^5}{\alpha^5} = 1$, and this means that $\frac{\beta}{\alpha} = w$ is a fifth root of unity, and that the expression $\beta = \alpha w$ is in the previous list. As a consequence, the fifth roots of $z_0 = (-\sqrt{3} + i)$ are:

$$2^{\frac{1}{5}}e^{i\frac{\pi}{6}}, 2^{\frac{1}{5}}e^{i\frac{17\pi}{30}}, 2^{\frac{1}{5}}e^{i\frac{29\pi}{30}}, 2^{\frac{1}{5}}e^{i\frac{41\pi}{30}}, 2^{\frac{1}{5}}e^{i\frac{53\pi}{30}}.$$

In general, the previous method indicates that: if β is an n-th root of a complex number, the other n-th roots have the form $\beta w, \beta w^2, \ldots, \beta w^{n-1}$, where $w = e^{i\frac{2\pi}{n}}$.

5 Fundamental theorem of algebra

A polynomial equation has the form p(x) = 0, where p(x) is a polynomial with complex coefficients, such as

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_i \in \mathbb{C}.$$

Theorem. Any polynomial equation of degree at least 1, has one root in \mathbb{C} . (The proof is not given.)

Thus, if $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ is a polynomial of degree n, by the Fundamental theorem of algebra, p(x) has at least one root in \mathbb{C} . Let us take for example α_1 . Then,

$$p(x) = (x - \alpha_1)p_1(x),$$

where $p_1(x) \in \mathbb{C}[x]$ is a polynomial of degree n-1. By applying again the previous theorem to $p_1(x)$, this one has another root in \mathbb{C} , which is denoted by α_2 . Therefore, it exists a polynomial $p_2(x) \in \mathbb{C}[x]$ of degree n-2 that gives the following decomposition of p(x):

$$p(x) = (x - \alpha_1)(x - \alpha_2)p_2(x).$$

By repeating this reasoning, we can obtain polynomials of degree 1 for which p(x) has the following decomposition:

$$p(x) = a_n(x - \alpha_1)(x - \alpha_2) \dots (x - \alpha_n).$$

Corollary. Any polynomial of degree n can be factorized in linear polynomials, and in particular, it has n roots in \mathbb{C} (some of them can be repeated).

Now, if we consider the polynomial equation $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ with real coefficients, this is, $a_i \in \mathbb{R}$, then its roots do not necessarily need to be real. However, we can conclude some interesting properties about those roots.

Fact. If $\alpha \in \mathbb{C}$ is a root of the equation p(x) = 0, being $p(x) \in \mathbb{R}[x]$, then $\overline{\alpha} \in \mathbb{C}$ is also a root of p(x).

Proof. Since $\alpha \in \mathbb{C}$ is a solution (root) of the equation p(x) = 0,

$$p(\alpha) = a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0 = 0.$$

Let us take the conjugate of α , $\overline{\alpha}$. Let us see that it is also a root of the previous equation. First of all, notice that $\overline{\alpha}^n = \overline{\alpha}^n$, and that since the coefficients of p(x) are real, we can conclude $\overline{a_k} = a_k$, for any k. Thus,

$$p(\overline{\alpha}) = a_n \overline{\alpha}^n + a_{n-1} \overline{\alpha}^{n-1} + \dots + a_1 \overline{\alpha} + a_0 =$$

$$a_n\overline{\alpha^n} + a_{n-1}\overline{\alpha^{n-1}} + \dots + a_1\overline{\alpha} + a_0 = \overline{a_n\alpha^n} + \overline{a_{n-1}\alpha^{n-1}} + \dots + \overline{a_1\alpha} + \overline{a_0} = \overline{p(\alpha)} = 0.$$

Consequently, in a real polynomial equation p(x) = 0, the non-real roots appear in pairs. More precisely, the non-real roots appear as a number and its conjugate. Hence,

$$p(x) = (x - \beta_1) \dots (x - \beta_k)(x - \alpha_1)(x - \overline{\alpha_1}) \dots (x - \alpha_l)(x - \overline{\alpha_l}), \text{ with } \beta_1, \dots, \beta_k \in \mathbb{R}.$$

Finally notice that

$$(x - \alpha_i)(x - \overline{\alpha_i}) = x^2 - (\alpha_i + \overline{\alpha_i})x + \alpha_i \overline{\alpha_i}$$

is a quadratic polynomial with real coefficients.