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2nd SUBJECT: COMPLEX NUMBERS

Operations. Conjugate. Polar form. Solutions of polynomial equations. Funda-

mental theorem of algebra.

It is known that the equation x2 + 1 = 0 has no real roots. If we denote by i the

number fulfilling i2 = −1 relationship, by definition we call complex number to the

expression z = a + ib, where a, b ∈ R, being a = Re(z) the real part of the complex

number z, and b = Im(z) the imaginary part of the complex number z.

It can be noticed that the real number a ∈ R can be identified by the complex number

a = a + i0. Thus, it can be easily figured out that R ⊆ C. Sometimes, the complex

number z = a + ib (this mode is called the binomial form of the complex number), can

be identified with the pair (a, b) ∈ R
2, and therefore we can speak about the complex

plane.

1 Operations

Let a, b, c, d ∈ R.

Addition

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

Subtraction

(a+ ib)− (c+ id) = (a− c) + i(b− d)

Product

Since i2 = −1, the following can be concluded

(a+ ib).(c+ id) = (ac− bd) + i(ad+ bc)

Division

a+ ib

c+ id
=

(a+ ib)(c− id)

(c+ id)(c− id)
=

(ac+ bd) + i(bc− ad)

c2 + d2

in the case c+ id 6= 0

2 Conjugate

If z = a+ ib is a complex number, the number z = a− ib is called its conjugate. In R
2,

if we denote as |z| the distance between the origin and the point (a, b), then by applying
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Pythagoras’ Theorem, we obtain |z| =
√
a2 + b2. Also notice that z.z = |z|2.

3 Polar form

If z = a+ ib, the angle θ formed by the 0X axis and the line passing through the origin

and z is called the argument of the complex number z, which is denoted by arg(a+ ib).

Therefore, by using basic trigonometrical concepts, a = r cos θ, b = r sin θ and we

obtain arg(a+ ib) = arctag b
a , being r = |z|.

The complex number z can also be addressed as,

z = r (cos θ + i sin θ) .

Notice that for the argument arg(z), there is only one value between−π < θ ≤ π, which

is called the principal value. In addition, we call the polar form of the complex number

z = a+ bi 6= 0 to the expression rθ, where r = |z| is the module of z = a+ bi, and θ is

the argument of z = a+ ib.

Example. 3i = 3π/2; 1 + i = (
√
2)π/4 and − 1− i = (

√
2)

5π/4.

Theorem. ( Moivre.) If z1 = r1 (cos θ1 + i sin θ1) and z2 = r2 (cos θ2 + i sin θ2), then

z1z2 = r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)).

Proof.

z1z2 = r1r2 (cos θ1 + i sin θ1) (cos θ2 + i sin θ2) =

= r1r2 ((cos θ1 cos θ2 − sin θ1 sin θ2) + i(cos θ1 sin θ2 + sin θ1 cos θ2)) =

= r1r2 (cos(θ1 + θ2) + i sin(θ1 + θ2)) .

Corollary. If z = r (cos θ + i sin θ), then zn = rn (cosnθ + i sinnθ), and z−n =

r−n (cosnθ − i sinnθ).

Proof. It is enough to notice that

z−1 =
1

z
=

1

r (cos θ + i sin θ)
=

cos θ − i sin θ

r
.

Example. (2π/3)
3 = 8π,

2π/3
√

3π/4
= ( 2

√

3
)
π/3−π/4

= ( 2
√

3
)
π/12

.

Example. Calculate (−
√
3 + i)7. Notice that the complex number z = −

√
3 + i can

also be written as z = 2(cos 5π
6
+ i sin 5π

6
). Thus,

z7 = 27(cos
35π

6
+i sin

35π

6
) = 27(cos

−π
6

+i sin
−π
6

) = 27(

√
3

2
+i
−1
2
) = 26(

√
3−i).

Example. Find the formula for cos(3θ) depending on cos θ.

First, we have that cos 3θ + i sin 3θ = (cos θ + i sin θ)3. Then, by raising it to the

third power and by matching the real parts and the imaginary parts, we conclude that

cos 3θ = 4 cos3 θ − 3 cos θ.
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4 Solutions of polynomial equations

For ease of use, complex numbers are represented by the exponential notation, which

is eiθ = cos θ + i sin θ. With this notation, if z = reiθ, then z = re−iθ. Besides,

z1 = r1e
iθ1 = r2e

iθ2 = z2 if and only if r1 = r2 and θ1 = θ2 + 2kπ, being k ∈ Z.

For example, if we want to solve the equation z3 = 1, we can use the following

decomposition:

0 = z3 − 1 = (z − 1)(z2 + z + 1),

where 1, −1

2
+ i

√

3

2
and −1

2
− i

√

3

2
are the roots, also written as 1, ei

2π
3 and ei

4π
3 , and

which are called the cube roots of unity.

In general, if a complex number z fulfills the equation zn = 1, this number is called

an n-th root of unity.

Proposition. If n ∈ N and w = ei
2π
n , then the n-th roots of unity are 1, w, w2, . . . , and

wn−1.

Proof. Let z = reiθ be one n-th root of unity. Then, zn = rneinθ = 1, and we infer that

r = 1 and nθ = 2kπ (being k ∈ Z). Thus, θ = 2kπ
n and z = ei

2kπ
n = wk. Therefore,

each n-th root of unity is a power of w. Viceversa, each power of w is an n-th root of

unity, because (wk)n = wkn = (ei
2π
n )kn = (ei2π)k = 1.

Example. The 4-th roots of unity are 1, ei
π
2 , eiπ and ei

3π
2 , also written as 1, i, −1,−i.

The 6-th roots of unity are 1, ei
π
3 , ei

2π
3 ,−1, ei 4π3 and ei

5π
3 , and they are the vertices of a

regular hexagon inscribed in a circle.

On the other hand, we can use the n-th roots of unity to calculate the n-th roots of

any complex number.

Example. Solve the equation z5 = −
√
3 + i. This is, calculate the fifth roots of the

complex number −
√
3 + i.

To do this, use the notation z0 = −
√
3 + i = 2ei

5π
6 . Thus, α = 2

1

5 ei
π
6 can be a fifth

root of z0. If w is a fifth root of unity, then (α.w)5 = α5w5 = α5 = z0. Therefore, α.w

is also a fifth root of z0. Consequently, the fifth roots of z0 = −
√
3 + i are:

α, αei
2π
5 , αei

4π
5 , αei

6π
5 , αei

8π
5 .

In fact, there are five roots which are roots of z0. If β is another fifth root of z0, then

β5 = α5 = z0, and from here we obtain
β5

α5 = 1, and this means that
β
α = w is a fifth

root of unity, and that the expression β = αw is in the previous list. As a consequence,

the fifth roots of z0 = (−
√
3 + i) are:

2
1

5 ei
π
6 , 2

1

5 ei
17π
30 , 2

1

5 ei
29π
30 , 2

1

5 ei
41π
30 , 2

1

5 ei
53π
30 .

In general, the previous method indicates that: if β is an n-th root of a complex

number, the other n-th roots have the form βw, βw2, . . . , βwn−1, where w = ei
2π
n .
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5 Fundamental theorem of algebra

A polynomial equation has the form p(x) = 0, where p(x) is a polynomial with complex

coefficients, such as

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ C.

Theorem. Any polynomial equation of degree at least 1, has one root in C. (The proof

is not given.)

Thus, if p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 is a polynomial of degree n, by the

Fundamental theorem of algebra, p(x) has at least one root in C. Let us take for example

α1. Then,

p(x) = (x− α1)p1(x),

where p1(x) ∈ C[x] is a polynomial of degree n − 1. By applying again the previous

theorem to p1(x), this one has another root in C, which is denoted by α2. Therefore, it

exists a polynomial p2(x) ∈ C[x] of degree n−2 that gives the following decomposition

of p(x):

p(x) = (x− α1)(x− α2)p2(x).

By repeating this reasoning, we can obtain polynomials of degree 1 for which p(x) has

the following decomposition:

p(x) = an(x− α1)(x− α2) . . . (x− αn).

Corollary. Any polynomial of degree n can be factorized in linear polynomials, and in

particular, it has n roots in C (some of them can be repeated).

Now, if we consider the polynomial equation p(x) = anx
n + an−1x

n−1 + · · · +
a1x + a0 with real coefficients, this is, ai ∈ R, then its roots do not necessarily need to

be real. However, we can conclude some interesting properties about those roots.

Fact. If α ∈ C is a root of the equation p(x) = 0, being p(x) ∈ R[x], then α ∈ C is also

a root of p(x).

Proof. Since α ∈ C is a solution (root) of the equation p(x) = 0,

p(α) = anα
n + an−1α

n−1 + · · ·+ a1α+ a0 = 0.

Let us take the conjugate of α, α. Let us see that it is also a root of the previous equation.

First of all, notice that αn = αn, and that since the coefficients of p(x) are real, we can

conclude ak = ak, for any k. Thus,

p(α) = anα
n + an−1α

n−1 + · · ·+ a1α+ a0 =
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anαn+an−1αn−1+ · · ·+a1α+a0 = anαn+an−1αn−1+ · · ·+a1α+a0 = p(α) = 0.

Consequently, in a real polynomial equation p(x) = 0, the non-real roots appear in

pairs. More precisely, the non-real roots appear as a number and its conjugate. Hence,

p(x) = (x−β1) . . . (x−βk)(x−α1)(x−α1) . . . (x−αl)(x−αl), with β1, . . . , βk ∈ R.

Finally notice that

(x− αi)(x− αi) = x2 − (αi + αi)x+ αiαi

is a quadratic polynomial with real coefficients.
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