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PRELIMINARY SECTION

MATHEMATICAL LANGUAGE

1 First concepts

Axiom: An axiom is a statement that is taken to be true, to serve as a premise or

starting point for further reasoning and arguments.

Definition: The act of defining, or of making something definite, distinct, or clear.

A definition is not a specific reference to a mathematical object, but more truly it is a

reference to the language of mathematics that we use to define mathematical objects.

Theorem: In mathematics, a theorem is defined as a statement that has been proven

on the basis of previously established statements, such as other theorems, and gene-

rally accepted statements, such as axioms. A theorem is a logical consequence of those

axioms. The proof of a mathematical theorem is a logical argument for the theorem

statement given according to the rules of a deductive system.

Proposition: In mathematics, a proposition is a formal statement of either a truth to

be proved or an operation to be perfomed; a theorem or a problem.

Corollary: In mathematics, a corollary usually follows a theorem. The use of the

term “Corollary” rather than “Proposition” or “Theorem” is subjective. The importance

of the corollary is often considered secondary to that of the initial theorem.

Symbol: A symbol is a mark or a sign that indicates or represents an idea, object, or

a relationship. For example, numerals are symbols for numbers. Alphabetic letters may

be symbols for sounds. The variable “x”, in a mathematical equation, may signify for

instance the position of a particle in the space, etc.

2 Some useful symbols in Mathematics

• Set theory. Let x be an element and let A,B any two subsets.
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Operation Notation How do we read it?

Content x ∈ A x is contained in A or x belongs to A

Content A ⊆ B A is a subset of (the set) B or A is contained in (the set) B

Content A ⊂ B A is a proper subset of B or A is contained properly in B

A twisted line over a symbol undoes its meaning. For instance, x /∈ A means that

x does not belong to A.

• Expressions

Operation Notation How do we read it?

Equal x = y x is equal to y

Less than x < y x is strictly less than y

Greater than x > y x is greater than y

Equivalent x ≈ y x is equivalent to y

• Basic operators

Let p and q any two propositions.

Operation Notation How do we read it?

Negation kp Not p

Meet p ∧ q p and q

Join p ∨ q p or q

• Consequence

What does “p =⇒ q” mean? If the proposition “p” holds, then the proposition “q”

is satisfied as well. What is more, if both “p =⇒ q” and “q =⇒ p” hold, then it is

read “p” holds if and only if “q” holds.

• Quantifiers

The quantifiers are necessary to confirm when a statement is true or not. There are

three basic quantifiers: the universal quantifier, the existential quantifier, and the

existential quantifier with the uniqueness mark.

Operation Notation How do we read it?

Universal ∀x.. for all x

Existential ∃x.. there exists at least x for which

Existential with uniqueness mark ∃!x there exists only one x for which
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3 Mathematical proofs

Let us assume that the statement p is true. Now the aim is to prove that a statement called

q holds, as well. In other words, p =⇒ q. The process consists in obtaining a chain of

conclusions, starting from the statement p as follows:

p =⇒ p1, p1 =⇒ p2, . . . , pn =⇒ q,

for which each statement pi is a previously given hypothesis or an already proven the-

orem. When that chain reaches pn =⇒ q, the statement q is obtained, and the process

finishes. Next, we enumerate the most used mathematical proof methods.

(i) Direct proof

(ii) Indirect proof

(iii) Finding a counter example

(iv) Proof by recursion or by induction

(i) Direct proof: if the statement p is true and the consequence p =⇒ q holds, then

the statement q is true, as well.

(ii) Indirect proof. There are two types of indirect proofs:

ii-a) By contrast: to prove the result “if p then q”, the contrary is proved: “kq then

kp”.

ii-b) By way of contradiction: verifying the veracity of q consistes in imposing its

negation and getting as a consequence a contradiction with the initial hypotheses; it

means that kq is also false, and consequently it is deduced that q is true.

Example. If S is the set of all prime numbers, then S is an infinite set. (p =⇒ q).

By way of contradiction, let us suppose that S is a finite set, i.e. p ∧ kq. Let us

consider S = {p1, p2, . . . , pk}. Since the set S is finite, we compute the product of all

the elements of S, and denote by b the following number: b = (p1.p2 . . . pk) + 1. It

is clear that there exists at least a p′ prime number such that p′ divides b (or such that

b is a multiple of that p′ prime number). Let us denote by r that statement. Since p′ is

a prime number and S the set of all prime numbers, it is obvious that p′ ∈ S. On the

other hand, looking at the definition of b, we conclude that neither of the elements of

S divides b (or that b is not multiple of neither of the elements of S). In conclusion, p′

does not divide b, i.e. kr holds, and we get a contradiction, i.e. r ∧ kr. In other words,
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(p ∧ kq) =⇒ (r ∧ kr), which is false. This implies that the set S of all prime numbers

is not finite, i.e. S is an infinite set.

(iii) Finding a counter example: in this case, to prove the negation of the conclusion

“p =⇒ q”, an example for which, at the same time p and kq hold must be found.

Example. Let us consider the following p and q propositions. p proposition: the integer

number n is divisible by 6 and by 4, and q proposition: the integer number n is divisible

by 24. Does p proposition imply q proposition?

The answer is no. For instance, the integer number 12 satisfies at the same time the

statements p and kq, since 12 is divisible by 6 and by 4, but it is not divisible by 24. In

conclusion, p does not imply q.

(iv) Proof by recurrence or by induction. These arguments prove that the proposition

for which any natural number n is involved is true. To prove it, it is enough to check

that such proposition holds for the natural number 1, and that if the statement of the

proposition holds true for the natural number n, then it also holds for the following

natural number n+ 1.

Symbolically, the induction proposition is the following one:

p(1) ∧ ∀k[p(k) =⇒ p(k + 1)] =⇒ ∀n, p(n).

If it is possible to prove the previous statement, then also p(1) ∧ ∀k[p(k) =⇒ p(k + 1)]

holds, and consequently the statement ∀n, p(n) is true, as well.

The induction method consists of two steps:

(i) First step. Prove that the statement p(1) is true.

(ii) Induction step. Prove that ∀k[p(k) =⇒ p(k + 1)].

Example. Prove the following statement:

∀n, 2n ≤ 2n+1

(i) First step. Prove that the statement p(1) holds: 21 ≤ 21+1, since 21 = 2, 21+1 =

4 and 2 ≤ 4.

(ii) Induction step. Prove that ∀k[p(k) =⇒ p(k + 1)]. Let us assume that the state-

ment p(k) is true, i.e. let us assume that 2k ≤ 2k+1 holds (hypothesis). Now let us

prove that the statement p(k + 1) is true, i.e. let us prove that 2k+1 ≤ 2k+1+1 =

2k+2 holds. To do this, let us multiply both sides of the inequality of the hypothesis

by 2. Then the statement 2k.2 ≤ 2k+1.2 is satisfied, in other words, 2k+1 ≤ 2k+2

holds, which is what we desired.
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