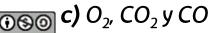


TEMA 1: FUNDAMENTOS QUÍMICOS DE LA COMBUSTIÓN TEMA 2: SEGUIMIENTO DE LOS PROCESOS DE COMBUSTIÓN

AUTOEVALUACIÓN I (ENUNCIADOS)

Blanca Ma Caballero Iglesias Maite de Blas Martín


Indicar cuál es la respuesta correcta:

- **I.1.** Para que un proceso de combustión pueda iniciarse es necesario que se cumpla:
 - **a)** El combustible y el comburente (oxígeno del aire) deben de mezclarse en ciertas proporciones
 - **b)** La temperatura alcanzada por la mezcla combustible-comburente (oxígeno del aire) ha de ser igual o superior a la temperatura de inflamación **c)** a) y b) simultáneamente
- 1.2. Respecto al aire utilizado como comburente (el oxígeno), no es cierto que:
 - **a)** En la práctica se puede obtener una combustión completa suministrando la cantidad estequiométrica de aire
 - **b)** En la práctica es imposible obtener una combustión completa suministrando la cantidad estequiométrica de aire
 - **c)** Aún utilizando exceso de aire, en la práctica se encuentran casi siempre en los gases de combustión pequeñas cantidades de CO e H₂

- **I.3.** En cuanto a la combustión teórica:
 - **a)** El comburente utilizado (oxígeno del aire) se refiere a aire seco y en condiciones ambientales
 - **b)** El volumen de los gases de combustión generados es referido a gases secos y medidos en condiciones normales (0 °C y 1 atm)
 - c) El volumen de los gases de combustión generados es referido a gases secos y medidos en condiciones ambientales
- 1.4. En lo que se refiere a una combustión incompleta:
 - a) El comburente (oxígeno del aire) se utiliza en exceso
 - **b)** En el análisis de los gases de combustión producidos se encuentra O_2 , CO, H_2 , y hollín/partículas inquemadas
 - **c)** En el análisis de los gases de combustión producidos se encuentra CO, H_2 , y hollín/partículas inquemadas

- **1.5.** Indicar en cuál de las siguientes opciones todos los compuestos son productos de la combustión incompleta o "inquemados":
 - a) CO, H_2 , hidrocarburos, partículas de carbono y NO_x
 - **b)** CO, H₂, hidrocarburos y partículas de carbono
 - c) SO_2 , H_2O , hidrocarburos y partículas de carbono
- **I.6.** La presencia de hollín en los gases de combustión:
 - **a)** Dificulta la recuperación del calor por formación de depósitos en la superficie de los intercambiadores de calor
 - **b)** Puede medirse de manera directa y objetiva mediante la medida de la opacidad de los gases de combustión
 - c) No está relacionada con la disminución del rendimiento térmico
- **1.7.** Mediante el aparato Orsat de 3 cámaras se analizan los gases de combustión secos, obteniéndose los contenidos de :
 - a) O_2 , CO_2 y SO_2
 - **b)** CO_2 , O_2 , H_2 , C_nH_m , CH_4 , CO

- **1.8.** En lo que respecta a los óxidos de nitrógeno, NOx:
 - **a)** El término es suma de NO y NO₂. Se forman a partir de tres mecanismos: 1.-térmicos, 2.- del combustible y 3.- Súbitos. En los NO_x el mayoritario es el NO_2 y el mecanismo principal de formación es el NO_x térmico
 - **b)** Los NO_x térmicos se forman por reacción entre el nitrógeno y el oxígeno del aire a altas temperaturas (>1000 °C), los NO_x del combustible se forman a partir del nitrógeno que contiene el combustible y los NO_x súbitos se forman por reacción del nitrógeno molecular con radicales libres
 - ${\it c)}$ Los ${\rm NO_x}$ son productos deseables de la combustión ya que en su formación se desprende calor y además no son contaminantes atmosféricos

