

Introducción a la Teoría de Códigos

M.A. García, L. Martínez, T. Ramírez

Facultad de Ciencia y Tecnología. UPV/EHU

Ejemplos de Pruebas de Autoevaluación

Mayo de 2017

Prueba de autoevaluación: Modelo A

Curso OCW: Introducción a la Teoría de Códigos

Teoría

1. (2 ptos.) Probar que el código dual C^{\perp} de un (n, k)-código cíclico $C \subseteq \mathbb{F}_q^n$ es cíclico y tiene dimensión n - k.

Problemas

1. Se considera el código lineal $C \subseteq \mathbb{F}_3^8$, cuya matriz generadora es

$$G = \begin{pmatrix} 1 & 2 & 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 1 & 2 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 1 & 2 & 0 & 1 \end{pmatrix}.$$

- a) (1,5 ptos.) Localiza, si es posible, una matriz generadora de C que esté dada en forma estándar y una matriz de control de C.
- b) (1 pto.) Demuestra que la distancia mínima de C es 4.
- c) (1 pto.) ¿Es C cíclico?. En caso de que lo sea, calcula su polinomio generador.
- 2. Se considera el código lineal $C_1 \subseteq \mathbb{F}_3^8$, dado por

$$C_1 = <00111201, 01220211, 12121212, 10122021>.$$

- a) (1.5 ptos.) Demuestra que C_1 es cíclico y calcula su polinomio de control. ¿Cuál es la dimensión de C_1 ?
- b) (1 pto.) Calcula una matriz generadora y un polinomio generador de $C_1^{\perp}.$
- c) (1 pto.) ¿Es C_1 autoortogonal?
- d) (1 pto.) Decodifica la palabra 01001110. ¿Es única su decodificación? Razona la respuesta.

Ayuda: La descomposición en factores irreducibles sobre \mathbb{F}_3 de x^8-1 es

$$(1+x)(2+x)(1+x^2)(2+x+x^2)(2+2x+x^2).$$

Prueba de autoevaluación: Modelo B

Curso OCW: Introducción a la Teoría de Códigos

Teoría

1. (2 ptos.) Probar la existencia y unicidad del polinomio generador de un código cíclico $C \subseteq \mathbb{F}_q^n$ y que éste es un divisor de $x^n - 1$.

Problemas

1. Se considera el código lineal $C \subseteq \mathbb{F}_5^5$, cuya matriz de control viene dada por

$$H = \begin{pmatrix} 0 & 4 & 3 & 2 & 1 \\ 4 & 3 & 2 & 1 & 0 \end{pmatrix}.$$

- a) (1 pto.) Hallar su distancia mínima.
- b) (1,5 ptos.) Decodificar la palabra 12031. ¿Tiene decodificación única?
- c) (1 pto.) ¿Existe alguna palabra de C que no tenga decodificación única? Razona tu respuesta.
- d) (2 ptos.) ¿Es C cíclico? En caso de respuesta afirmativa, calcula su polinomio generador y una matriz generadora.

Ayuda: La descomposición en factores irreducibles sobre \mathbb{F}_5 de x^5-1 es $(4+x)^5$

2. (2,5 puntos) Sea $C \subseteq \mathbb{F}_q^n$ un código lineal de dimensión k que corrige errores $\mathbf{e} \in \mathbb{F}_q^n$ tales que $w(\mathbf{e}) \leq t$. Probar que $2t + k \leq n$.

Prueba de autoevaluación: Modelo C

Curso OCW: Introducción a la Teoría de Códigos

Teoría:

1. (2 ptos.) Definir distancia de Hamming y código perfecto. Enunciar y probar la Cota de Hamming.

Problemas:

1. Se considera el código binario C cuya matriz de control es:

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

- a) (1,5 ptos.) Hallar una matriz generadora de C.
- b) (0,5 ptos.) Probar que 11101000 pertenece a C.
- c) (1,5 pto.) ¿Es C un código autodual?
- d) (1,5 ptos.) Calcular un código cíclico C_1 de menor dimensión posible que contenga a 11101000.
- e) (1,5 pto.) ¿Es dim $(C_1 \cap C) > 1$?
- 2. (1,5 pto.) Sea $C \subseteq \mathbb{F}_q^n$ un código lineal de dimensión k y distancia mínima d. Si n=15 y k=6, probar que C no corrije 5 errores o más.