

Introducción a la Teoría de Códigos

M.A. García, L. Martínez, T. Ramírez

Facultad de Ciencia y Tecnología. UPV/EHU

Ejercicios y Problemas propuestos Tema 4: CÓDIGOS CÍCLICOS

Mayo de 2017

Ejercicios Propuestos: Códigos cíclicos

- 1. * Localizar los códigos cíclicos de \mathbb{F}_2^7 , determinando para cada uno de ellos un polinomio generador y una matriz generadora.
- 2. * Encontrar los códigos cíclicos no triviales de \mathbb{F}_3^4 y hallar para cada uno de ellos un polinomio de control y una matriz de control.
- 3. Hallar, si es que existe, un código cíclicos de \mathbb{F}_2^7 de dimensión 4 y determinar las palabras que lo forman.
- 4. * Hallar, si es que existe, un código cíclico de \mathbb{F}_2^7 de dimensión 3 y determinar las palabras que lo forman.
- 5. * Determinar, si es que existe, un código cíclico binario con la menor dimensión posible que contenga a
 - (a) 1010011
 - (b) 1001011
- 6. * Se considera el código cíclico C de \mathbb{F}_2^9 cuyo polinomio generador es $1+x^3$. Hallar C^{\perp} .
- 7. * Demostrar que si C es un código cíclico binario de longitud n impar, entonces $1 \dots 1 \in C$ si y sólo si C contiene una palabra de peso impar.
- 8. * Demostrar que si C es un código cíclico binario de longitud n impar, entonces $1 \dots 1 \in C$ si y sólo si $g(1) \equiv 1 \mod 2$, siendo g(x) el polinomio generador de C.
- 9. * Sea C un código cíclico binario de longitud n. Estudiar si el conjunto

$$C_1 = \{ \mathbf{c} \in C \mid w(\mathbf{c}) \equiv 0 \mod 2 \}$$

es un código lineal. En caso de respuesta afirmativa, determinar si es cíclico.

10. * Sea $C \subseteq \mathbb{F}_q^n$ un código cíclico con polinomio generador g(x). Si g_0 es el término independiente de g(x), demostrar que $g_0 \neq 0$.

- 11. Sea $C \subseteq \mathbb{F}_q^n$ un código cíclico de dimensión k con polinomio generador g(x). Demostrar que C^{\perp} es un código cíclico de dimensión n-k y hallar el polinomio generador de C^{\perp} .
- 12. Se considera el código $C \subseteq \mathbb{F}_3^6$ tal que C = <122100,012210,120021>.
 - (a) Demuestra que C es un código cíclico.
 - (b) Halla el polinomio generador de C y el polinomio generador de C^{\perp} .
 - (c) Calcula una matriz de control de C.
 - (d) Utilizando el método de decodificación cíclica, decodifica la palabra 222022. ¿Es única su decodificación?
 - (e) Usando una matriz de control de C, deduce cuál es la distancia mínima de C. ¿Cuántos errores detecta C? ¿Cuántos errores corrige C? ¿Es C perfecto? Razona tu respuesta.
- 13. Hallar un código cíclico BCH de longitud 16 y distancia mínima prevista 9 en el cuerpo \mathbb{F}_3 .