

ENTREGABLE 2 PRINCIPIOS DE TRANSFERENCIA DE CALOR. EJERCICIOS

1. Trasmisión de calor

Ejercicio 1:

Calcular el flujo de calor que se produce por <u>conducción</u> a través de una pieza de 30 cm de espesor y una superficie de 1x1m con una temperatura exterior de 5°C e interior de 21°C:

- a) de hormigón armado (k=2,5 w/mk)
- b) de acero (k=50 w/mk)
- c) de ladrillo hueco (k=0,32 w/mk)
- d) de ladrillo perforado (k=0,35 w/mk)
- e) de ladrillo macizo (k=0,85 w/mk)
- f) de madera de conífera peso medio (k =0,15 w/mk)
- g) de placa de yeso (k=0,25 w/mk)
- h) de placa de corcho (k=0,03 w/mk)
- i) de lana de roca (k=0,04 w/mk)
- j) de poliestireno expandido (k=2,5 w/mk)
- k) de poliuretano proyectado con CO2 (k=0,03 w/mk)

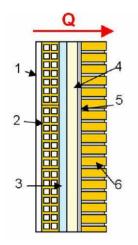
Ejercicio 2:

Calcular el flujo de calor que se produce por <u>convección</u> en un muro de 1x1m con una temperatura superficial de 12°C y exterior de 5°C

h _{ext}	a) 13,1	b) 16,8	c) 24,1	d) 38,9	e) 53,6	f) 68,3	g) 83
(W/m²K)							

Ejercicio 3:

Calcular el flujo de calor que se produce por <u>radiación</u> de una pieza de una superficie de 1x1m a una temperatura de 5°C el cielo y 20°C la superficie:


a)	de hormigón armado	=3	0,92
b)	de acero inoxidable	=3	0,35
c)	de ladrillo hueco	=3	0,84
d)	de ladrillo perforado	=3	0,84
e)	de ladrillo macizo	=3	0,84
f)	de madera de conífera peso med	io	€= 0,75

2.-Transmitancia de un cierre opaco tradicional

a) Determinar la resistencia térmica de cada una de las capas que componen el siguiente cierre opaco a partir de los espesores y las conductividades térmicas dadas.

Para la cámara de aire tomar el valor normalizado correspondiente a cámaras de aire no ventiladas de 2 cm de espesor con flujo de calor horizontal.

b) Determinar la resistencia térmica total del cerramiento y la trasmitancia termica total. Para ello realizar la suma de las resistencias térmicas de cada una de las capas que compone el cerramiento más las resistencias térmicas superficiales normalizadas para el ambiente exterior y el ambiente interior.

1-Yeso (1,5 cm; k:0,30 W/mk)

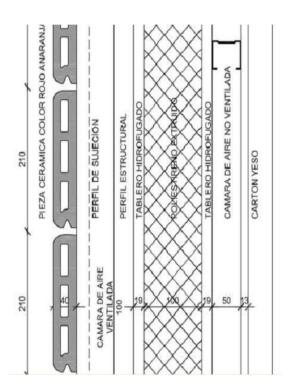
2-Ladrillo gran formato (7cm; k: 0,48 W/mk)

3-Camara de aire (2cm; k:-- W/mk)

4-Poliuretano (4cm; k: 0,028 W/mk)

5-Mortero hidrófugo (1,5 cm; k: 1 W/mk)

6-Ladrillo caravista (11,5cm; k: 0,75 W/mk)



3. Transmitancia de una fachada ventilada

a) Determinar la resistencia térmica de cada una de las capas que componen la siguiente fachada ventilada a partir de los espesores y las conductividades térmicas dadas.

Para la cámara de aire tomar el valor normalizado correspondiente a cámaras de aire no ventiladas de 5 cm de espesor con flujo de calor horizontal.

b) Determinar la resistencia térmica total del cerramiento y la trasmitancia termica total.

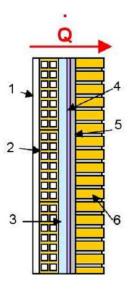
1-carton yeso (k:0,25 W/mk)

2-Camara de aire (k:-- W/mk)

4-Tablero hidrófugo (k: 0,21 W/mk)

5-Poliestireno (k: 0,034 W/mk)

6-Tablero hidrófugo (k: 0,21 W/mk)



4. Transmitancia térmica de una cierre con film reflexivo

a) Determinar la resistencia térmica total del cerramiento y la trasmitancia termica total de la siguiente solución constructiva, suponiendo que la emisividad del film reflexivo es de ϵ 0,05

1-Yeso (1,5 cm; k:0,30 W/mk)

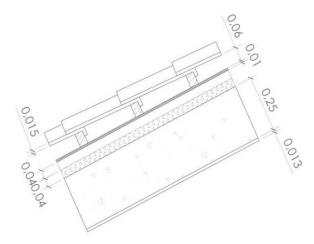
2-Ladrillo gran formato (7cm; k: 0,48 W/mk)

3-Camara de aire (2cm; k:-- W/mk)

4-Film reflexivo (1cm; k: 0,034 W/mk)

5-Mortero hidrófugo (1,5 cm; k: 1 W/mk)

6-Ladrillo caravista (11,5cm; k: 0,75 W/mk)



5. Transmitancia térmica en una cubierta con aislante reflexivo

a) Determinar la resistencia térmica total y la trasmitancia termica total de la siguiente cubierta, suponiendo que la emisividad del film reflexivo es de ϵ = 0,05

1-Teja cerámica (1,5 cm; k:1,30 W/mk)

2-Cámara de aire (6cm; k:-- W/mk)

3-Film reflexivo (1cm; k: 0,034 W/mk)

4-Cámara de aire (6cm; k:-- W/mk)

5-Poliestireno extruido (4cm; k: 0,035 W/mk)

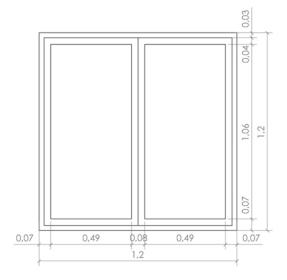
5-Forjado de hormigón (25 cm;)

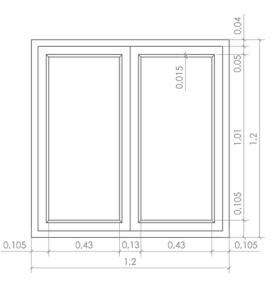
6-Placa cartón yeso (1,3cm; k:0,25 W/mk)

6. Transmitancia en ventanas: carpintería y vidrio

El valor de la transmitancia térmica de una ventana U_H en W/m^2K viene dado por la siguiente fórmula:

$$U_{H} = (1-FM) \times U_{H,V} + FM \times U_{H,M}$$


Siendo:


FM: superficie de marco en relación a la superficie total de la ventana, adimensional 0-1

U_{H·V}: valor de la transmitancia térmica del vidrio, W/m²K

U_{H/M}: valor de la transmitancia térmica del marco, W/m²K

- a) Calcular la transmitancia térmica de estas dos ventanas con un vidrio doble 4/12/8. (U=2,8 W/m²K)
- b) ¿Qué pasaría si le pusiésemos un vidrio normal más un vidrio de baja emisividad ($\xi = 0,1, U=1,8$)?

Ventana 1

Ventana 2

- 1- Ventana 1 aluminio: U_{H.M}=4
- 2- Ventana 1 aluminio rotura puente térmico < 12 mm : U_{HM}=3,2
- 3- Ventana 2 madera: U_{H,M}=2,2

SOLUCIÓN EJERCICIOS:

1. Trasmisión de calor

Ejercicio 1:

a) 133,33 W	b) 2666,66 W	c) 17.06 W	d) 18.66 W	e) 45,33 W	f) 7,99 W
g) 13,33 W	h) 7,99 W	i) 2,13 W	j) 133,25 W	k) 1,59 W	

Ejercicio 2:

				_	_	
a) 91,7 W	b) 117,6 W	c) 168,7 W	d) 272,3 W	e) 375,2 W	f) 478,1 W	g) 581 W

Ejercicio 3:

a) 72,88 W	b) 27,73 W	c) 66,54 W	d) 66,54 W	e) 66,54 W	f) 59,41 W
a, 12,00 vv	0/21,13 **	C) 00,5 1 VV	4,00,51	C/ 00,5 1 VV	1,55,11 00

2.-Transmitancia de un cierre opaco tradicional

Componentes	Espesor (mm)	K (W/mK)	$R_t(m^2 K/W)$
Ladrillo caravista	115	0,750	0,153
Mortero hidrofugo	15	1	0,015
Poliuretano	40	0,028	1,429
Camara de aire no ventilada	20	-	0,170
Tabique de ladrillo de gran formato	70	0,480	0,146
Guarnecido y lucio de yeso	15	0,300	0,050
1/hi + 1/he	-	-	0,170
		R _t (m ² K/W)	2,133
		U₊ (W/m² K/)	0,47

3. Transmitancia de una fachada ventilada

Componentes	Espesor (mm)	K (W/mK)	$R_t(m^2 K/W)$
Placa de carton yeso	13	0,25	0,052
Camara de aire no ventilada	50	-	0,180
Tablero hidrofugo	19	0,21	0,090
Poliestireno extruido	100	0,034	2,941
Tablero hidrofugo	19	0,21	0,090
1/hi + 1/hi	-	-	0,26
		R _t (m ² K/W)	3,61
		U _t (W/m ² K/)	0,28

4. Transmitancia térmica de una cierre con film reflexivo

Componentes	Espesor (mm)	K (W/mK)	R _t (m ² K/W)
Ladrillo caravista	115	0,75	0,153
Mortero hidrofugo	15	1	0,015
Film reflexivo	10	0,034	0,294
Camara de aire	20	-	0,665
Tabique de ladrillo gran formato	70	0,48	0,146
Guarnecido y lucido de yeso	15	0,3	0,050
1/hi + 1/he	-	-	0,17
		R _t (m ² K/W)	1,493
		U _t (W/m ² K/)	0,67

5. Transmitancia térmica en una cubierta con aislante reflexivo

Componentes	Espesor (mm)	K (W/mK)	$R_t(m^2 K/W)$
Teja cerámica	15	1,3	0,012
Cámara de aire	60	-	0,454
Film reflexivo	10	0,034	0,294
Cámara de aire	40	-	0,454
Poliestireno extruido	40	0,035	1,143
Forjado hormigón	250		0,190
Placa cartón yeso	13	0,25	0,052
1/hi + 1/he			0,14
		R _t (m ² K/W)	2,598
	Ī	U _t (W/m ² K/)	0,37

6. Transmitancia en ventanas: carpintería y vidrio

	FM	l	J _{H•} ,	U _H , _M	U	Н
Ventana 1, aluminio	0,27	2,8	1,8	4	3,12	2,40
Ventana 1, aluminio rotura puente térmico <12mm	0,27	2,8	1,8	3,2	2,90	2,20
Ventana 2, madera	0.27	2.8	1.8	2,2	2,64	1,91

