Self-evaluation Tests Wages 7

Instructions

- Click Start.
- Answer the questions.
- Click **End**.
- The cell **Score:** shows the number of right answers.
- Each question is worth 1 point.
- Click **Correct** to check the correct answers.
- The test starts on the next page.
- Recommended duration: 20 minutes.

Questions

Open the data file wages.gdt. Estimate by OLS the regression model:

$$W_{i} = \beta_{1} + \beta_{2} E X_{i} + \beta_{3} E X_{i}^{2} + \beta_{4} E D_{i} + \beta_{5} T_{i} +$$

$$+ \beta_{6} F_{i} + \beta_{7} M_{i} + \beta_{8} (F_{i} \times M_{i}) +$$

$$+ \beta_{9} C_{i} + \beta_{10} E D_{i}^{2} + u_{i}$$

General Linear Regression Model

- 1. The estimated coefficient of the variable tenure is:

 - (a) 0.0207219 (b) 0.119882 (c) 6.097 (d) 0.521990
- 2. The plots of the OLS residuals against each regressor suggest that:
 - (a) The error term is randomly distributed
 - (b) The error term is autocorrelated
 - (c) The error term is heteroskedastic
 - (d) The error term is homoskedastic

- 3. Test whether the variance of the error term is heteroskedastic using the White test ($\alpha = 5\%$).
 - (a) The null hypothesis is:

(a)
$$\sigma_i^2 = 0$$

(b)
$$\sigma_i^2 = \sigma^2 e du c_i$$

(c)
$$\sigma_i^2 = \sigma^2$$

(d)
$$\sigma_i^2 = \sigma^2 \frac{1}{educ_i}$$

(b) The test statistic is:

(b)
$$\frac{SSR_1/q}{SSR_2/(N-k)}$$

(c)
$$NR^2$$

(d)
$$SSR_2/SSR_1$$

- (c) The coefficient of determination of the auxiliary regression is:

 - (a) 0.452529 (b) 0.170054 (c) 0.794750 (d) 0.025533

- (d) The sample value of the White's test statistic is:

- (a) 238.0302 (b) 6.536448 (c) 203.456 (d) 89.448213
- (e) Is the error term heteroskedastic? ($\alpha = 5\%$)
 - (a) Yes

(b) No

- 4. Test whether the variance of the error term is not constant over the sample using the Breusch-Pagan test ($\alpha = 5\%$).
 - (a) The null hypothesis is:

(a)
$$\sigma_i^2 = 0$$

(b)
$$\sigma_i^2 = \sigma^2 e du c_i$$

(c)
$$\sigma_i^2 = \sigma^2$$

(d)
$$\sigma_i^2 = \sigma^2 \frac{1}{educ_i}$$

(b) The test statistic is:

(a)
$$SSE/2$$

(b)
$$\frac{SSR_1/q}{SSR_2/(N-k)}$$

(c)
$$NR^2$$

(d)
$$SSR_2/SSR_1$$

- (c) The explained sum of squares of the auxiliary regression is:

 - (a) 435.2529 (b) 515.7689 (c) 537.2341 (d) 412.801
- (d) The sample value of the test statistic is:
 - (a) 217.62645 (b) 257.88445 (c) 268.61705 (d) 206.44037
- (e) Is the error term heteroskedastic? ($\alpha = 5\%$)
 - (a) Yes

(b) No

5. Given the result obtained in the previous test, what is the standard error of the OLS estimator of β_9 valid to test the statistical significance of the variable *living in a big city*?

(a) 0.3452890 (b) 0.092839 (c) 0.06763588 (d) 0.260069

6. Living in a big city is a statistically significant variable ($\alpha = 5\%$).

(a) True (b) False