Self-evaluation Tests Wages 6

Instructions

- Click Start.
- Answer the questions.
- Click **End**.
- The cell **Score:** shows the number of right answers.
- Each question is worth 1 point.
- Click **Correct** to check the correct answers.
- The test starts on the next page.
- Recommended duration: 30 minutes.

Questions

Open the data file wages.gdt. Estimate by OLS the regression model:

$$W_{i} = \beta_{1} + \beta_{2} E X_{i} + \beta_{3} E X_{i}^{2} + \beta_{4} E D_{i} + \beta_{5} T_{i} +$$

$$+ \beta_{6} N W_{i} + \beta_{7} F_{i} + \beta_{8} M_{i} +$$

$$+ \beta_{9} (F_{i} \times M_{i}) + \beta_{10} C_{i} + \beta_{11} E D_{i}^{2} + u_{i}$$

General Linear Regression Model

- 1. The estimated coefficient of the variable tenure is:

 - (a) 0.0207219 (b) 0.119985 (c) 6.097 (d) 0.521990

- 2. Plot the OLS residuals against education. It suggests that:
 - (a) The error term is randomly distributed
 - (b) The error term is autocorrelated
 - (c) The error term is heteroskedastic
 - (d) The error term is homoskedastic

- 3. Test whether the variance of the error term is an increasing function of education using the Goldfeld-Quandt test ($\alpha = 5\%$). Construct two subsamples of size 175 each.
 - (a) The null hypothesis is:

(a)
$$\sigma_i^2 = 0$$

(b)
$$\sigma_i^2 = \sigma^2 e du c_i$$

(c)
$$\sigma_i^2 = \sigma^2$$

(d)
$$\sigma_i^2 = \sigma^2 \frac{1}{educ_i}$$

(b) The alternative hypothesis is:

(a)
$$\sigma_i^2 = 0$$

(b)
$$\sigma_i^2 = \sigma^2 e du c_i$$

(c)
$$\sigma_i^2 = \sigma^2$$

(d)
$$\sigma_i^2 = \sigma^2 \frac{1}{educ_i}$$

(c) The test statistic is:

(a)
$$\frac{SSE}{2}$$

(b)
$$\frac{SSR_1/q}{SSR_2/(N-k)}$$

(c)
$$NR^2$$

(d)
$$\frac{SSR_2}{SSR_1}$$

(e) The SSR of the second subsample is:							
	(a) 739.1280	(b) 2034.422	(c) 3920.119	(d) 2569.234			
(f)	(f) The sample value of the Goldfeld-Quandt's test statistic is:						
	(a) 0.3633	(b) 0.4251	(c) 2.7524	(d) 3.125			
(g)	(g) Is there any evidence in the sample of heterosked asticity? $(\alpha = 5\%)$						
	(a) Yes		(b) No				
. Given the result obtained in the previous test, what is the estimated variance of the OLS estimator of β_5 valid to test the statistical significance of the variable tenure?							
(a)	0.0248162 (1	o) 7.05622e-06 (c) 4.37526e-04	(d) 6.14018e-04			

(a) 739.1280 (b) 2034.422 (c) 3920.119 (d) 2569.234

(d) The SSR of the first subsample is:

6.	What is the sample value of the test statistic used to test the statistical significance of gender?					
	(a) 65.8998 (b) 33.04	431	(c) -1.048	(d) -4.989		
7.	. Gender is a statistically significant variable ($\alpha = 5\%$).					
	(a) True		(b) False			
8.	The expected wage is higher for an individual living in a city holding the rest of the characteristics constant ($\alpha = 5\%$).					
	(a) True		(b) False			
9.	_	ationship between wages and education is linear, holding of the characteristics constant ($\alpha = 5\%$).				
	(a) True		(b) False			

(b) False

5. Tenure is a statistically significant variable ($\alpha = 5\%$).

(a) True