Self-evaluation Tests Wages 5

Instructions

- Click Start.
- Answer the questions.
- Click End.
- The cell **Score:** shows the number of right answers.
- Each question is worth 1 point.
- Click **Correct** to check the correct answers.
- The test starts on the next page.
- Recommended duration: 35 minutes.

Questions

Open the data file wages.gdt. Consider the regression model that determine wages (W) as a function of experience (EX), education (ED), tenure (T), ethnic group, gender and marital status.

$$W_{i} = \beta_{1} + \beta_{2} EX_{i} + \beta_{3} EX_{i}^{2} + \beta_{4} ED_{i} + \beta_{5} T_{i} + \beta_{6} NW_{i} + \beta_{7} F_{i} + \beta_{8} M_{i} + u_{i}$$

Objective: To modify this regression model so that it is possible to test the hypothesis that married women get lower wages.

General Linear Regression Model

 To test this hypothesis the regression model should include the term:

(a)
$$F_i^2$$
 (b) M_i^2

(c)
$$F_i + M_i$$
 (d) $F_i \times M_i$

- 2. The appropriate regression model would be:
 - (a) $W = \beta_1 + \beta_2 E X_i + \beta_3 E X_i^2 + \beta_4 E D_i + \beta_5 T_i + \beta_6 N W_i + \beta_7 F_i^2 + \beta_8 M_i + u_i$
 - (b) $W = \beta_1 + \beta_2 E X_i + \beta_3 E X_i^2 + \beta_4 E D_i + \beta_5 T_i + \beta_6 N W_i + \beta_7 F_i + \beta_8 M_i^2 + u_i$
 - (c) $W = \beta_1 + \beta_2 E X_i + \beta_3 E X_i^2 + \beta_4 E D_i + \beta_5 T_i + \beta_6 N W_i + \beta_7 F_i + \beta_8 M_i + \beta_9 (F_i + M_i) + u_i$
 - (d) $W = \beta_1 + \beta_2 E X_i + \beta_3 E X_i^2 + \beta_4 E D_i + \beta_5 T_i + \beta_6 N W_i + \beta_7 F_i + \beta_8 M_i + \beta_9 (F_i \times M_i) + u_i$

Estimate the model you have chosen in the previous item:

- 3. The estimated coefficient of the variable education is:
 - (a) 0.523130 (b) 0.526584 (c) 0.560615 (d) 0.511415
- **4.** The estimated variance of the error term is:
 - (a) 3.693086 (b) 2.828403 (c) 13.63888 (d) 7.99986

(a) 0.12483	9	(b) 0.52313	0		
(c) 0.04826	65	(d) 10.84			
-	The expected difference in wages between a single woman and single man, holding the rest of the factors constant, is:				
(a) β_7	(b) β_8	(c) β_9	(d) $\beta_7 + \beta_9$		
(a) Yes8. The expect	rence statistically ed difference in man, holding the	(b) No wages between a	married woman and		
			(d) $\beta_7 + \beta_9$		
9. Is this diffe	rence statisticall	y significant? (α	=5%)		
(a) Yes		(b) No			

5. The estimated increment in wages when tenure increments by one

year, holding the rest of the factors constant, is:

	(a) P1	(5) 78	(c) pg	(d) po 1 pg	
11.	Is this difference statistically significant? ($\alpha = 5\%$)				
	(a) Yes		(b) No		
12 .	The expected di- holding the rest	_		l and single men,	
	(a) β_7	(b) β_8	(c) β_9	(d) $\beta_8 + \beta_9$	
13.	Is this difference	e statistically sig	nificant? ($\alpha = 5\%$	%)	
	(a) Yes		(b) No		
14.	Test whether go null hypothesis		tically significan	t variable. The	
	(a) $\beta_7 = \beta_9$ (c) $\beta_7 = 0$		(b) $\beta_7 = \beta_9 = 0$ (d) $\beta_9 = 0$		
			(4) 29		

10. The expected difference in wages between married and single

 $(c) \beta_0$

(d) $\beta_0 \perp \beta_0$

women, holding the rest of the factors constant, is:

 $(b) \beta_0$

(a) $\beta_{\overline{a}}$

	(a) 20.96724	(b) 20.9628	(c) 31.2584	(d) 34.7594
16.	Gender is a stat	tistically significa	ant variable ($\alpha =$	5%).
	(a) True		(b) False	
17.	Test whether m The null hypoth		statistically sign	nificant variable.
	(a) $\beta_8 = \beta_9$ (c) $\beta_8 = 0$		(b) $\beta_8 = \beta_9 = 0$ (d) $\beta_9 = 0$	
18.		arital status is a ue of the test sta		nificant variable.
	(a) 10.5231	(b) 19.3474	(c) 11.237	$(\mathrm{d})\ 20.9628$
19.	Marital status i	s a statistically s	significant variab	le ($\alpha = 5\%$).
	(a) Yes		(b) No	

15. Test whether gender is a statistically significant variable. The

sample value of the test statistic is:

20 .	Ethnic group is a statistically s	ignificant variable ($\alpha = 5\%$).
	(a) Yes	(b) No
21	The estimated increase in wages	when experience increases h

- 21. The estimated increase in wages when experience increases by one year, holding the rest of the factors constant, is:
 - (a) 0.198694 for an individual with 10 years of experience.
 - (b) 0.198694 + 0.0400650 for an individual with 10 years of experience.
 - (c) 0.198694 0.080130 for an individual with 10 years of experience.
 - (d) 0.198694 0.0400650 for an individual with 10 years of experience.
- 22. It is estimated that the expected wage for a white single man with 19 years of education lays between: $(\alpha = 5\%)$
 - (a) 3.50 and 5.25 (b) 1.50 and 12.76
 - (c) 7.13 and 2.866 (d) 2.866 and 1.50

23. A white single man with 19 years of education and 2 years of experience has been hired by a new firm. He claims to get 15.14 dollars per hour. Do you think it is possible?

(a) Yes (b) No