Self-evaluation Tests Wages 1

Instructions

- Click Start.
- Answer the questions.
- Click **End**.
- The cell **Score:** shows the number of right answers.
- Each question is worth 1 point.
- Click **Correct** to check the correct answers.
- The test starts on the next page.
- Recommended duration: 15 minutes.

Questions

Open the data file wages.gdt to analyse wages (W) as a function of experience (EX).

Simple Linear Regression Model

1. The simple linear regression model would be:

(a)
$$W_i = \beta_1 + \beta_2 + u_i$$

(b)
$$W_i = \beta_1 + \beta_2 E X_i + u_i$$

(c)
$$W_i = \beta_2 E X_i + u_i$$

(d)
$$W_i = EX_i + u_i$$

- 2. The dependent variable is:

 - (a) β_2 (b) EX
- (c) u

(d) W

- **3.** The explanatory variable is:
 - (a) β_2

- (b) EX (c) u

(d) W

4. The sample size is:

T =

- **5.** The sample regression function is:
 - (a) $W_i = 5.37331 + 0.0307219 EX_i$
 - (b) $\widehat{W}_i = 0.0307219 + 5.37331 EX_i$
 - (c) $W_i = 5.37331 + 0.0307219 \widehat{EX}_i$
 - (d) $\widehat{W}_i = 5.37331 + 0.0307219 EX_i$
- **6.** The estimated wage for a worker without experience is:
 - (a) 5.37331
- (b) 0.0307219 (c) 0.256992 (d) 0.012747
- 7. The estimated wage for the first worker in the sample is:
 - (a) 5.37331

- (b) 3.10 (c) 5.434749 (d) 5.4040319

8.	The OLS	residual	for	the	first	worker	in	the s	ample	is:

(a) 10

(b) -2.33475 (c) 5.434749 (d) 5.680529

9. The estimated wage for a worker with one year of experience is:

(a) 5.37331 (b) 3.10 (c) 5.434749 (d) 5.4040319

10. The estimated standard error of $\hat{\beta}_2$ is:

(a) 0.256992 (b) 3.693086 (c) 3.672972 (d) 0.0118111

11. The coefficient of determination is:

(a) 0.010863 (b) 0.012747 (c) 0.009555 (d) 0.0118111

12. Test whether experience is a statistically significant variable. The null hypothesis is:

(a) $\beta_1 = \beta_2 = 0$

(b) $\beta_1 + \beta_2 = 1$

(c) $\beta_2 = 0$

(d) $\beta_2 = 1$

13.	The sample	value of	the stat	istic to	test	whether	experience	is	a
	statistically	significan	ıt varial	ole is:					

- (a) 20.9085 (b) 0.256992 (c) 0.012747 (d) 2.6011
- 14. Experience is a statistically significant variable. $(\alpha = 5\%)$
 - (a) True

(b) False