

Example 6.1

CAMPUS OF INTERNATIONAL EXCELLENCE

Interval estimation

Pilar González and Susan Orbe

Dpt. Applied Economics III (Econometrics and Statistics)

Pizza consumption.

Consider the simple regression model of consumption of pizza on income.

- a. Estimate the coefficients of the model by OLS using the data file pizza.gdt and write down the Sample Regression Function.
- b. If the annual income increases by \$1000, what is the estimated variation in the expected consumption of pizza?
- c. If the annual income increases by \$1000, estimate the lower bound of the variation in the expected consumption of pizza (95% probability).
- d. If the annual income increases by \$1000, estimate the upper bound of the variation in the expected consumption of pizza (90 % probability).
- e. Add the explanatory variable age to the model and estimate its coefficients by OLS. If the annual income increases by \$1000 holding age constant, estimate the upper and lower bounds between which the variation of consumption will lie (95% probability).
- f. Comment on the results.

First, estimate the model by OLS. The results are shown in the figure below.

💱 gretl: model 1					
<u>File Edit T</u> ests <u>Save G</u>	raphs <u>A</u> nalysi	s <u>L</u> aTeX			6
Model 1: OLS, using Dependent variable:		ons 1-40			
coeffi	cient sto	i. error	t-ratio	p-value	
const 128.9	80 34	.5913	3.729	0.0006	***
income 1.1	2127 0.	459527	2.440	0.0195	**
Mean dependent var	191.5500	S.D. d	lependent v	ar 155.	8806
Sum squared resid	819285.8	S.E. o	f regressi	on 146.	8338
R-squared	0.135457	Adjust	ed R-squar	ed 0.11	2706
F(1, 38)	5.953856	P-valu	e(F)	0.01	9461
Log-likelihood	-255.3037	Akaike	criterion	514.	6074
Schwarz criterion	517.9852	Hannan	-Quinn	515.	8287

æ

The **Analysis** pulldown menu of the model's estimation window is used to estimate confidence intervals for coefficients.

Analysis -> Confidence intervals for coefficients

gretl: model 1					x
<u>File Edit Tests Save Gra</u>	phs <u>A</u> na	alysis	<u>L</u> aTeX		8
Model 1: OLS, using o Dependent variable: p			ay actual, fitted, residual asts		
coeffici		_ Confi	idence intervals for coefficients		
			idence <u>e</u> llipse iicient covariance <u>m</u> atrix	F	
income 1.121				**	
Mean dependent var		00	-		
Sum squared resid R-squared			S.E. of regression Adjusted R-squared		
F(1, 38) Log-likelihood -	5.9538 255.30			0.019461 514.6074	
Schwarz criterion				515.8287	

э

<ロト < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The output shows the confidence intervals for all the coefficients in the model.

📓 gretl: coefficient confidence	intervals		
t(38, 0.025) = 2.024			
VARIABLE	COEFFICIENT	95% CONFIDENCE	INTERVAL
const	128.980	58.9540	199.007
income	1.12127	0.191006	2.05153

The figure above shows the value of the t-ordinate, the regressors, the point estimation of the coefficients and the lower and upper bounds of the confidence intervals.

Gretl computes by default 95 % confidence intervals.

The α icon at the top of the gretl:coefficient confidence intervals window can be used to change the size of the confidence.

📓 gretl: coefficient confider	gretl: coefficient conf			23
	Confidence level 1 - α :			
t(38, 0.025) = 2.0	0.90			_
VARIABLE	0.95	CONFIDENCE	INTERVAL	
const	0.99	8,9540	199.007	
income	Other 0.95 ↓	191006	2.05153	
	Cancel OK			

The results show the lower and upper bounds of the 90 % confidence intervals.

greti:	coefficient confidence in	tervals		
7		. 🗶		
t(38,	0.05) = 1.686			
	VARIABLE	COEFFICIENT	90% CONFIDENCE	INTERVAL
	const	128.980	70.6611	187.300
	income	1.12127	0.346528	1.89601

The results of estimating the model proposed in item e. are shown below.

gretl: model 2						X
<u>File Edit T</u> ests <u>S</u>	ave <u>G</u> raphs <u>A</u> nalysis	s <u>L</u> aTeX				8
Model 2: OLS, w Dependent varia	using observatio able: pizza	ons 1-40				-
C	oefficient std	. error	t-ratio	p-value		
const	342.885 72.	3434	4.740	3.14e-05	***	
income	1.83248 0.	464301	3.947	0.0003	***	
age	-7.57556 2.	31699	-3.270	0.0023	***	Е
Mean dependent	var 191.5500	S.D. dep	endent va	ar 155.8	806	
Sum squared rea	sid 635636.7	S.E. of	regressio	on 131.0	701	
R-squared	0.329251	Adjusted	R-square	d 0.292	994	
F(2, 37)	9.081100	P-value(F)	0.000	619	
Log-likelihood	-250.2276	Akaike c	riterion	506.4	552	
Schwarz criter:	ion 511.5218	Hannan-Q	uinn	508.20	871	+

æ

The 95% confidence intervals estimated for this model appear in the figure below.

gretl: coefficient confidence in	ntervals		
	3 🗙		
t(37, 0.025) = 2.026			
VARIABLE	COEFFICIENT	95% CONFIDENCE	INTERVAL
const	342.885	196.303	489.467
income	1.83248	0.891716	2.77324
age	-7.57556	-12.2702	-2.88089

æ

Results

- SRF: $\widehat{pizza}_i = 128.980 + 1.12127 \, income_i \qquad i = 1, \dots, 40$
- b. $\hat{\beta}_2$: The estimated change in the expected consumption of pizza when income increases by \$1000 is \$1.12127.
- c. The 95% confidence interval for β_2 is: $CI(\beta_2)_{0.95} = (0.191006 ; 2.05153)$ At a 95% confidence level, the estimated lower bound of the variation in the consumption of pizza when the annual income increases by \$1000 is \$0.191006.
- d. The 90% confidence interval for β_2 is: $CI(\beta_2)_{0.90} = (0.346528; 1.89601)$ At a 90% confidence level, the estimated upper bound of the variation in the consumption of pizza when the annual income increases by \$1000 is \$1.89601.

 $\mathsf{SRF:} \quad \widehat{pizza_i} = 342.885 + 1.83248 \, income_i - 7.57556 \, age_i \qquad i = 1, \dots, 40$

e. The 95% confidence interval for β_2 is: $CI(\beta_2)_{0.95} = (0.891716 \ ; \ 2.77324)$ At a 95% confidence level, the estimated lower and upper bounds between which the variation in the consumption of pizza will lie when the annual income increases by \$1000 are 0.891716 and 2.77324 dollars, respectively.