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Learning objectives

• To estimate a linear regression model by Ordinary Least Squares (OLS) using
available data.

• To interpret the estimated coefficients of a linear regression model.

• To derive the properties of the OLS estimator.

• To derive the properties of the sample regression function.

• To calculate a measure of Goodness-of-fit.

• To estimate the linear regression model using non sample information by
Restricted Least Squares.
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Estimation of the Linear Regression Model.

Objective.

To estimate the unknown parameters of the linear regression model:

Yi = β1 + β2X2i + . . .+ βkXki + ui i = 1, 2, . . . , N. ui ∼ NID(0, σ2)

using the available sample.

• Y : dependent variable, endogenous variable.

• Xj , j = 2, . . . , k: regressors.

• β: unknown coefficients.

• u: non observable error term.

• i: index used with cross-section data (t in case of time series data).

• N : sample size (T in case of time series data).
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Estimation of the Linear Regression Model.

General linear regression model.

Yi = β1 + β2X2i + . . .+ βkXki + ui i = 1, 2, . . . , N. ui ∼ NID(0, σ2)

Some remarks:
• This is the expression that will be used for the GLRM throughout the
theoretical exposition of the estimation methodology.

• This expression includes all the regression models linear in the coefficients
discussed in Lesson 4.

• Xj , j = 2, . . . , k,: regressors that can be quantitative variables, dummy
variables or other terms, such as product of variables, quadratic or logarithmic
transformations, ...

• The interpretation of the coefficients depends on what Xj stands for.
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Estimation of the Linear Regression Model.

Consider the general linear regression model:

Yi = β1 + β2X2i + . . .+ βkXki + ui i = 1, 2, . . . , N

Written for each observation:


Y1 = β1 + β2X21 + β3X31 + . . .+ βkXk1 + u1 i = 1

Y2 = β1 + β2X22 + β3X32 + . . .+ βkXk2 + u2 i = 2
...

...
...

...
...

...
Yi = β1 + β2X2i + β3X3i + . . .+ βkXki + ui i = i
...

...
...

...
...

...
YN = β1 + β2X2N + β3X3N + . . .+ βkXkN + uN i = N
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Estimation of the Linear Regression Model.

The linear regression model can be written as well in matrix form. This expression
will be used for some proofs and to derive some complex expressions.

The GLRM in matrix form.

Y = Xβ + u



Y1

Y2
...
Yi
...
YN


=



1 X21 X31 · · · Xk1

1 X22 X32 · · · Xk2
...

...
...

...
1 X2i X3i · · · Xki

...
...

...
...

1 X2N X3N · · · XkN




β1
β2
β3
...
βk

+



u1

u2
...
ui
...
uN
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The OLS estimator.

Objective: to estimate the unknown coefficients of the Population Regression
Function:

E(Yi|X) = β1 + β2 X2i + . . .+ βkXki

Sample Regression Function (SRF): obtained substituting the estimated
coefficients:

Ŷi = β̂1 + β̂2 X2i + . . .+ β̂kXki

where Ŷi are called the fitted or adjusted values.

The estimation error is referred as residual:

ûi = Yi − Ŷi = ûi = Yi − β̂1 − β̂2 X2i − . . .− β̂kXki

This residual depends on the error term and on the error due to the estimation of
the coefficients:

ûi = ui + (β1 − β̂1) + (β2 − β̂2)X2i + . . .+ (βk − β̂k)Xki
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The OLS estimator.

The OLS criterion.

The ordinary least squares estimator (OLS) is obtained minimizing the objective
function:

minβ̂1,...,β̂k

N∑
i=1

û2
i = minβ̂1,...,β̂k

N∑
i=1

(Yi − β̂1 − β̂2X2i − . . .− β̂kXki)2

First order conditions.
Given by the first derivatives of the objective function equal to zero:

∂
∑N
i=1 û

2
i

∂β̂1

∣∣∣
β̂1=β̂OLS

1

= 0, . . . ,
∂
∑N
i=1 û

2
i

∂β̂k

∣∣∣
β̂k=β̂OLS

k

= 0
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The OLS estimator.

The first order conditions are:

∂
∑N
i=1 û

2
i

∂β̂1

∣∣∣
β̂1=β̂OLS

1

= −2
N∑
i=1

(Yi − β̂1 − β̂2X2i − . . .− β̂kXki) = 0

∂
∑N
i=1 û

2
i

∂β̂2

∣∣∣
β̂2=β̂OLS

2

= −2
N∑
i=1

(Yi − β̂1 − β̂2X2i − . . .− β̂kXki)X2i = 0

...

∂
∑N
i=1 û

2
i

∂β̂k

∣∣∣
β̂k=β̂OLS

k

= −2
N∑
i=1

(Yi − β̂1 − β̂2X2i − . . .− β̂kXki)Xki = 0
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The OLS estimator.

Normal equations.

∑
Yi = Nβ̂1 + β̂2

∑
X2i + . . . + β̂k

∑
Xki∑

X2iYi = β̂1

∑
X2i + β̂2

∑
X

2
2i + . . . + β̂k

∑
X2iXki

...
...

...
...∑

XkiYi = β̂1

∑
Xki + β̂2

∑
XkiX2i + . . . + β̂k

∑
X

2
ki.

The first order conditions provide a system of k linear independent equations with
k unknown parameters, which is called normal equations. The OLS estimator is
obtained by solving this system of equations.

Given that the second order conditions of minimization are always satisfied, we
may affirm that the solution of the normal equations system is a minimum.
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The OLS estimator.

The OLS estimator in matrix form.

Objective function: minβ̂ û′û = minβ̂ (Y −Xβ̂)′(Y −Xβ̂).

First order conditions:

∂û′û

∂β̂

∣∣∣
β̂=β̂OLS

= 0 ⇒ −2X ′(Y −Xβ̂OLS) = 0 ⇒ X ′ûOLS = 0.

Normal equations: X ′Y = X ′Xβ̂OLS .

Second order conditions:

∂û′û

∂β̂∂β̂′

∣∣∣
β̂=β̂OLS

= 2X ′X It is always a semidefinite positive matrix.
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The OLS estimator.

OLS estimator.
Solving this system of k linear independent equations, we get the OLS estimators:

β̂OLS = (X ′X)−1X ′Y

X
′
X =


N

∑
X2i

∑
X3i · · ·

∑
Xki∑

X2i

∑
X2

2i

∑
X2iX3i · · ·

∑
X2iXki∑

X3i

∑
X3iX2i

∑
X2

3i · · ·
∑

X3iXki

...
...

...
...∑

Xki

∑
XkiX2i

∑
XkiX3i · · ·

∑
X2

ki



X
′
Y =


∑

Yi∑
X2iYi∑
X3iYi

...∑
XkiYi

 β̂ =


β̂1
β̂2
β̂3
...
β̂k


See Examples 5.1 and 5.2 for applications.
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The OLS estimator.

Some equivalences

Observation i

Yi = β1 + β2X2i + . . .+ βKXki + ui

E(Yi|X) = β1 + β2X2i + . . .+ βkXki

Ŷi = β̂1 + β̂2X2i + . . .+ β̂KXki

ui = Yi − β1 − β2X2i − . . .− βkXki

ûi = Yi − Ŷi

ûi = Yi − β̂1 − β̂2X2i − . . .− β̂KXki

ûi = ui + (β1 − β̂1) + . . .+ (βk − β̂k)Xki

In matrix form

Y = Xβ + u

E(Y |X) = Xβ

Ŷ = Xβ̂

U = Y −Xβ

Û = Y − Ŷ

Û = Y −Xβ̂

Û = U +X(β − β̂)
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GLRM estimation. The Sample Regression Function (SRF).

Some algebraic properties of the sample regression function:

Ŷi = β̂1 + β̂2 X2i + . . .+ β̂kXki i = 1, 2, . . . , N

1. The sum of the residuals is zero:
N∑
i=1

ûi = 0.

2. The residuals are orthogonal to the regressors:
N∑
i=1

ûiXji = 0

Proof. From the normal equations system:

X
′(Y −Xβ̂) = X

′
û = 0⇔



∑N

1
ûi∑N

1
X2iûi∑N

1
X3iûi

...∑N

1
Xkiûi

 =


0
0
0
...
0

⇒
{ ∑N

i=1
ûi = 0∑N

i=1
ûiXji = 0, ∀j
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The Sample Regression Function.
3. The residuals are orthogonal to the fitted values: Ŷ ′û = 0.

Proof:
Ŷ ′û = (Xβ̂)′û = β̂′ X ′û︸︷︷︸

=0

= 0

4. The sample means of Y and Ŷ are equal: Ȳ = ¯̂
Y .

Proof:

ûi = Yi − Ŷi ⇐⇒ Yi = Ŷi + ûi∑
Yi =

∑
Ŷi +

∑
ûi︸ ︷︷ ︸

=0

1
N

∑
Yi = 1

N

∑
Ŷi ⇒ Ȳ = ¯̂

Y
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The Sample Regression Function.

5. The SRF lays on the vector of sample means (Ȳ , X̄2, . . . , X̄k).

Proof:
N∑

i=1

ûi = 0 ⇔
∑

(Yi − β̂1 − β̂2X2i − . . .− β̂kXki) = 0

∑
Yi −Nβ̂1 − β̂2

∑
X2i − . . .− β̂k

∑
Xki = 0

∑
Yi = Nβ̂1 + β̂2

∑
X2i + . . .+ β̂k

∑
Xki

1
N

∑
Yi = β̂1 + β̂2

1
N

∑
X2i + . . .+ β̂k

1
N

∑
Xki

Ȳ = β̂1 + β̂2X̄2 + . . .+ β̂kX̄k
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Properties of the OLS estimator.
Properties of the OLS estimator: β̂ = (X ′X)−1X ′Y

1. Linearity. An estimator is linear if and only if it can be expressed as a linear
function of the dependent variable, conditional on X.

Note that, conditional on X, β̂ can be written as a linear function of the
error term as well.

Proof. Under assumptions A1 and A2:
β̂ = (X ′X)−1X ′Y = (X ′X)−1X ′(Xβ + u) = β + (X ′X)−1X ′u

2. Unbiasness. β̂ is unbiased, that is, the expected value of the OLS estimator
is equal to the population value of the coefficients of the model.

Proof. Under assumptions A1 through A3:
E(β̂|X) = E[(β + (X ′X)−1X ′u)|X] = β + (X ′X)−1X ′E(u|X) = β
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Properties of the OLS estimator.

3. Variance: V (β̂|X) = σ2(X ′X)−1

Proof. Under assumptions A1 through A5:

V (β̂|X) = E[(β̂ − E(β̂|X))(β̂ − E(β̂|X))′|X] = E[(β̂ − β)(β̂ − β)′|X] =

= E
[[

(X′X)−1
X
′
u
] [

(X′X)−1
X
′
u
]′
|X
]

=

= (X′X)−1
X
′
σ

2
ITX(X′X)−1 =

= σ
2(X′X)−1

X
′
X(X′X)−1 = σ

2(X′X)−1

For simplicity, this covariance matrix will be denoted by V (β̂).

V (β̂) = σ2(X ′X)−1 =


V (β̂1) Cov(β̂1, β̂2) · · · Cov(β̂1, β̂k)

Cov(β̂2, β̂1) V (β̂2) · · · Cov(β̂2, β̂k)

...
...

. . .
...

Cov(β̂k, β̂1) Cov(β̂k, β̂2) · · · V (β̂k)
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Properties of the OLS estimator.

This variance is minimum in the class of all linear and unbiased estimators.

Gauss-Markov Theorem

Under assumptions A1 through A5, in the class of linear unbiased estimators, OLS
has the smallest variance, conditional on X.

Under assumptions A1 through A5, β̂OLS is the best linear unbiased
estimator (BLUE) of β̂.

This theorem justifies the use of the OLS method instead of other competing
estimators.

Note. All the analysis is conditional on X, even though it is not going to be explicitely
written from now onwards in order to simplify the notation.
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Estimation.
OLS residuals.
The OLS residuals can be written in terms of the error term as follows:

û = Mu

where M is a squared matrix of order N , symmetric (M = M ′), idempotent
(MM = M), with rank rg(M)= tr(M)= N −K and orthogonal to X
(MX = 0).

Proof:

û = Y − Ŷ = Y −Xβ̂ = Y −X(X ′X)−1X ′Y =

= [IN −X(X ′X)−1X ′]Y = [IN −X(X ′X)−1X ′](Xβ + u) =

= Xβ −X(X ′X)−1X ′Xβ + [IN −X(X ′X)−1X ′]u =

= [IN −X(X ′X)−1X ′]︸ ︷︷ ︸
=M

u = Mu
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Estimation.

Properties of the OLS residuals.

1. Expected value: E(û) = 0.

Proof:
E(û) = ME(u) = M 0 = 0

2. Variance: Even in the case of homoskedastic and uncorrelated disturbances
(u ∼ (0, σ2I)), the OLS residuals are NOT homoskedastic and they ARE
correlated.

Proof:

V (û) = E(ûû′) = E(Muu′M ′) =

= Mσ2INM = σ2M → M 6= I
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Estimation.

Estimator of the variance of the error term, σ2.

σ̂2 = û′û

N − k
= SSR

N − k
=
∑
û2
i

N − k

Proof:
This estimator of the variance of the error term is unbiased:

E(σ̂2) = E(û′û)
N − k = σ2(N − k)

N − k = σ2

given that:

E(û′û) = E(u′Mu) = E(tr(u′Mu)) = E(tr(Muu′)) =

= tr(E(Muu′)) = tr(Mσ2IN ) =

= σ2tr(M) = σ2(N − k)
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Estimation.

Estimator of the covariance matrix of β̂.

V̂ (β̂) =


V̂ (β̂1) Ĉov(β̂1, β̂2) · · · Ĉov(β̂1, β̂k)

Ĉov(β̂2, β̂1) V̂ (β̂2) · · · Ĉov(β̂2, β̂k)
...

...
. . .

...
Ĉov(β̂k, β̂1) Ĉov(β̂k, β̂2) · · · V̂ (β̂k)

 = σ̂2(X ′X)−1
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GLRM estimation. Goodness-of-fit.

Sum of squares decomposition.

SST = SSE + SSR

• Total Sum of Squares: SST =
T∑
t=1

(Yt − Ȳ )2

It is a measure of the total sample variation in Y .

• Explained Sum of Squares: SSE =
T∑
t=1

(Ŷt − Ȳ )2

It is a measure of the sample variation in Ŷ .

• Residual Sum of Squares: SSR =
T∑
t=1

(Yt − Ŷt)2 =
T∑
t=1

û2
t

It is the sample variation in the OLS residuals.
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Goodness-of-fit.
Regression model: Yt = Ŷt + ût

=⇒ Yt is decomposed into two parts: fitted value and residual.

Estimating by OLS, the following decomposition holds:

SST = SSE + SSR

N∑
t=1

(Yt − Ȳ )2 =
N∑
t=1

(Ŷt − Ȳ )2 +
N∑
t=1

û2
t

Therefore, it can be proved that:
The total sample variation in Y can be expressed as the sum of

the variation in the fitted values of Y , Ŷ
(the variation in Y explained by the regression)

+ the variation in the OLS residuals, û
(the variation in Y UNexplained by the regression)
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Goodness-of-fit.

Proof.

Writting the GLRM as follows: ût = Yt − Ŷt ⇒ Yt = Ŷt + ût

The total sample variation in Y is: SST =
T∑
t=1

(Yt − Ȳ )2

T∑
t=1

(Yt − Ȳ )2 =
T∑

t=1

(Ŷt + ût − Ȳ )2 =
T∑

t=1

[(Ŷt − Ȳ ) + ût]2 =

=
T∑

t=1

(Ŷt − Ȳ )2 +
T∑

t=1

û2
t + 2

T∑
t=1

(Ŷt − Ȳ )ût =

=
T∑

t=1

(Ŷt − Ȳ )2 +
T∑

t=1

û2
t =

T∑
t=1

(Ŷt − ¯̂
Y )2 +

T∑
t=1

û2
t

SST = SSE + SSR
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Goodness-of-fit.

Goodness-of-fit measure.

Coefficient of determination:

R2 = SSE

SST

R2 is the fraction of the sample variation in Y that is explained by the variation in
the explanatory variables, X.

If the model contains an intercept, the coefficient of determination may be
calculated as follows:

R2 = 1− SSR

SST
∈ (0, 1)

Gretl computes the coefficient of determination using
the formula in terms of the Sum of Squares Residuals!
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Goodness-of-fit.

Some performance criteria.

These criteria are useful to compare the performance of nested regression models.

Rationale: to adjust the sum of squared residuals by the degrees of freedom.

Given that they are based on the SSR, the smaller the value of the criterion the
better the performance of the model except for the adjusted R2.

Adjusted R2: R̄2 = 1− N − 1
N − k

R2

Log-likelihood: `(θ̂) = N
2 (1 + ln 2π − lnN)− N

2 lnSSR

Akaike criterion: AIC = −2`(θ̂) + 2k

Schwarz criterion: BIC = −2`(θ̂) + k lnN

Hannan-Quinn criterion: HQC = −2`(θ̂) + 2k ln lnN
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Restricted Least Squares estimator.

Objective.

To estimate a linear regression model:

Yi = β1 + β2X2i + . . .+ βkXki + ui i = 1, 2, . . . , N. ui ∼ NID(0, σ2
u)

including non sample information on the coefficients.

The Restricted Least Squares estimator (RLS) is

β̂RLS = (X ′RXR)−1X ′RYR

where XR y YR are the observation matrix and the dependent variable of the
restricted model, that is, of the model that results from including the non sample
information in the regression model.

See Example 5.3 for applications.

Pilar González and Susan Orbe | OCW 2014 Lesson 5. Regression model: Estimation 35 / 64



Restricted Least Squares estimator.

Properties.

β̂RLS = (X ′RXR)−1X ′RYR

Conditioning on X, the RLS estimator is:

• Linear in u.

• Unbiased if the non sample information included in the estimation is true.

• The variance of the RLS estimator is always smaller than the variance of the
OLS estimator, even if the non sample information included is false.

Therefore, if the non sample information available is true, the RLS estimator
should be used because it is unbiased and has a smaller variance than the OLS
estimator.
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Restricted Least Squares estimator.

Example 1.

Consider the regression model:

pizzai = β1 + β2 incomei + β3 agei + ui i = 1, 2, . . . , N

subject to: β2 = −β3

Restricted model:
pizzai = β1 + β2(incomei − agei) + ui

XR =


1 income1 − age1
1 income2 − age2
...

...
1 incomeN − ageN

 YR =


pizza1
pizza2

...
pizzaN


β̂RLS =

(
β̂1

β̂2

)
β̂RLS

3 = −β̂RLS
2
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Restricted Least Squares estimator.

Example 2.

Consider the regression model:

pizzai = β1 + β2 incomei + β3 (agei × incomei) + ui i = 1, ..., N

subject to: β2 = 5

Restricted model:
pizzai − 5 incomei = β1 + β3 (agei × incomei) + ui

XR =


1 age1 × income1
1 age2 × income2
...

...
1 ageN × incomeN

 YR =


pizza1 − 5 income1
pizza2 − 5 income2

...
pizzaN − 5 incomeN


β̂RLS =

(
β̂1

β̂3

)
β̂RLS

2 = 5
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Restricted Least Squares estimator.

Example 3.

Consider the regression model:

Yt = β1 + β2 X2t + β3 X3t + β4 X4t + ut t = 1, 2, . . . , T

subject to: β3 + β4 = 1

Restricted model: Yt −X4t = β1 + β2 X2t + β3 (X3t −X4t) + ut

XR =


1 X21 X31 −X41
1 X22 X32 −X42
...

...
1 X2T X3T −X4T

 YR =


Y1 −X41
Y2 −X42

...
YT −X4T



β̂RLS =

 β̂1

β̂2

β̂3

 β̂RLS
4 = 1− β̂RLS

3
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Restricted Least Squares estimator.

Example 4.

Consider the regression model:

Yt = β1 + β2 X3t + β3 X32
t + β4 time + ut t = 1, 2, . . . , T

subject to: β2 = β3 = 0

Restricted model: Yt = β1 + β4 time+ ut

XR =


1 1
1 2
...

...
1 T

 YR =


Y1
Y2
...
YT


β̂RLS =

(
β̂1

β̂4

)
β̂RLS

2 = β̂RLS
3 = 0
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GLRM estimation. Omitting a relevant variable.

Omitting a relevant variable.

Let’s assume that this regression model satisfies all the assumptions:

Yi = β1 + β2 X2i + β3 X3i + . . .+ βkXki + ui i = 1, 2, . . . , N.

To omit X2 in this model ≡ to include a false restriction (β2 = 0)

The restricted model (omitting X2) will be:

Yi = β1 + β3 X3i + . . .+ βkXki + ui i = 1, 2, . . . , N

The Restricted Least Squares Estimator, β̂RLS = (X ′RXR)−1X ′RYR, will have
the following properties, conditional on X:
• Linear in u.
• BIASED because the restriction included is NOT true.
• Its variance is smaller than the variance of the OLS estimator.
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GLRM estimation. Including an irrelevant variable.

Including an irrelevant variable.

Consider the linear regression model:

Yi = β1 + β2X2i + . . .+ βkXki + ui i = 1, 2, . . . , N. (1)

Assume that it is known that β2 = 0, that is, that the regressor X2 is irrelevant.
In this case, it can be proved that the OLS estimator in model (1), conditional on
X, is:
• Linear in u.
• Unbiased because, even though an irrelevant variable is included, E(u|X) = 0 .
• The variance of the OLS estimator is the smallest in the class of linear and
unbiased estimators.

BUT it is possible to estimate the coefficients of model (1) with a smaller variance:

=⇒ including in the model the true restriction β2 = 0 and estimating by
Restricted Least Squares.
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Estimation results.

Example. Pizza consumption.

The file pizza.gdt contains information from N individuals on annual pizza
consumption (in dollars) and some characteristics of the individuals, such as:

• Annual income (in thousands of dollars).

• Age of the consumer (in years).

• Gender.

• Highest level of studies (basic, high-school, college, postgraduated)

The factors that determine pizza consumption will be analysed in detail in the
Example 5.1. The objective of this section is to estimate a very simple model for
pizza consumption in order to explain the estimation output produced by Gretl.
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Estimation results.

Consider the linear regression model:

pizzai = β1 + β2 incomei + β3 agei + ui i = 1, ..., N

where:

• pizza: dependent variable (pizza consumption).

• income: quantitative explanatory variable.

• age: quantitative explanatory variable.

• β1, β2, β3: unknown coefficients.

• u: error term.

• N : sample size.
• i: index.
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1–40
Dependent variable: pizza

Coefficient std. error t-ratio p-value
const 342.885 72.3434 4.7397 0.0000
income 1.83248 0.464301 3.9467 0.0003
age −7.57556 2.31699 −3.2696 0.0023

Mean dependent var 191.5500 S.D. dependent var 155.8806
Sum squared resid 635636.7 S.E. of regression 131.0701
R−squared 0.329251 Adjusted R−squared 0.292994
F (2, 37) 9.081100 p-value (F ) 0.000619
Log-likelihood −250.2276 Akaike criterion 506.4552
Schwarz criterion 511.5218 Hannan–Quinn 508.2871
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1–40
Dependent variable: pizza

The information shown in the estimation output heading is:

Model 1 → this is the first model estimated since Gretl was started.

OLS → the estimation method used.

using observations 1–40 → the sample size is 40.

Dependent variable: pizza → the dependent variable of the estimated regression
model is pizza.
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1–40
Dependent variable: pizza

Coefficient std. error t-ratio p-value
const 342.885 72.3434 4.7397 0.0000
income 1.83248 0.464301 3.9467 0.0003
age −7.57556 2.31699 −3.2696 0.0023

The first column shows the regressors included in the estimated regression model.
These regressors may be quantitative variables, dummy variables, products or
transformations of variables, ... That is, they represent the columns of the
observation matrix X: the constant (column of 1s) and the regressors income and
age.
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1–40
Dependent variable: pizza

Coefficient std. error t-ratio p-value
const 342.885 72.3434 4.7397 0.0000
income 1.83248 0.464301 3.9467 0.0003
age −7.57556 2.31699 −3.2696 0.0023

The second column shows the estimates of the coefficients of the model obtained
using the OLS estimator: β̂OLS = (X ′X)−1X ′Y .
The third column shows the standard errors of the OLS estimators of the
coefficients. These standard errors are the squared root of the elements in the
diagonal of the covariance matrix: V̂ (β̂) = σ̂2(X ′X)−1, where the estimator of
the variance of the error term is given by σ̂2 = SSR/(N − k).
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1–40
Dependent variable: pizza

Coefficient std. error t-ratio p-value
const 342.885 72.3434 4.7397 0.0000
income 1.83248 0.464301 3.9467 0.0003
age −7.57556 2.31699 −3.2696 0.0023

The two last columns contain the t-ratios and the p-values. This information is
useful to test the individual significance of the regressors (see Lesson 6).
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Estimation results.

Gretl output.

Mean dependent var 191.5500 S.D. dependent var 155.8806
Sum squared resid 635636.7 S.E. of regression 131.0701
R−squared 0.329251 Adjusted R−squared 0.292994
F (2, 37) 9.081100 p-value (F ) 0.000619
Log-likelihood −250.2276 Akaike criterion 506.4552
Schwarz criterion 511.5218 Hannan–Quinn 508.2871

At the bottom of the estimation output appears some information of interest: the
sum of squared residuals, coefficient of determination and the performance criteria
explained in this lesson (adjusted R2, Log-likelihood, Akaike criterion, Schwarz
criterion and Hannan–Quinn criterion).
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Estimation results.

Gretl output.

Mean dependent var 191.5500 S.D. dependent var 155.8806
Sum squared resid 635636.7 S.E. of regression 131.0701
R−squared 0.329251 Adjusted R−squared 0.292994
F (2, 37) 9.081100 p-value (F ) 0.000619
Log-likelihood −250.2276 Akaike criterion 506.4552
Schwarz criterion 511.5218 Hannan–Quinn 508.2871

Mean dependent var = 191.5500 → pizza = 1
N

∑N
i=1 pizzai

S.D. dependent var = 155.8806 → SDpizza =
√

1
N−1

∑N
i=1(pizzai − pizza)2

S.E. regression = 131.0701 → σ̂ =
√

SSR
N−k
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Estimation results.

Gretl output.

Mean dependent var 191.5500 S.D. dependent var 155.8806
Sum squared resid 635636.7 S.E. of regression 131.0701
R−squared 0.329251 Adjusted R−squared 0.292994
F (2, 37) 9.081100 p-value (F ) 0.000619
Log-likelihood −250.2276 Akaike criterion 506.4552
Schwarz criterion 511.5218 Hannan–Quinn 508.2871

The information given by F (2, 37) = 9.081100 and the p-value (F ) = 0.000619
are useful to test the joint significance of the regressors (see Lesson 6).
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Estimation results.

Gretl output.

The file chicken.gdt contains annual time series data from 1990 to 2012 on:

• Y : annual chicken consumption (in kilograms)

• X2: per capital real disposable income (in euros).

• X3: price of chicken (in euros/kilogram).

• X4: price of pork (in euros/kilogram)

• X5: price of beef (in euros/kilogram)

• Avian flue epidemic (1999-2003)

The factors that determine the evolution of chicken consumption will be analysed
in detail in the Example 5.2. In this section, a very simple model to determine
chicken consumption will be estimated in order to explain the Gretl estimation
output, focusing on the specific results for time series data.
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Estimation results.

Consider the regression model

Yt = β1 + β2 X2t + β3 X3t + β4 X4t + ut t = 1, ...T

where:

• Y : dependent variable (chicken consumption).
• X2: quantitative explanatory variable.
• X3: quantitative explanatory variable.
• X4: quantitative explanatory variable.
• β1, β2, β3, β4: unknown coefficients.
• u: error term.
• T : sample size.
• t: index.
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1990–2012 (T = 23)
Dependent variable: Y

Coefficient Std. Error t-ratio p-value
const 38.7207 3.61477 10.7118 0.0000
X4 4.37920 1.55013 2.8250 0.0108
X2 0.0109351 0.00236651 4.6208 0.0002
X3 −13.6515 3.91865 −3.4837 0.0025

Mean dependent var 39.66957 S.D. dependent var 7.372950
Sum squared resid 74.77556 S.E. of regression 1.983824
R2 0.937475 Adjusted R2 0.927603
F (3, 19) 94.95932 P-value(F ) 1.28e–11
Log-likelihood −46.19405 Akaike criterion 100.3881
Schwarz criterion 104.9301 Hannan–Quinn 101.5304
ρ̂ 0.563845 Durbin–Watson 0.882646
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1990–2012 (T = 23)
Dependent variable: Y

If the sample consists of time series data, the heading of the estimation output
shows the sample frequency:

1990–2012 (T = 23) → 23 annual observations

For quarterly data: 1950:1-1955:3 (T = 23).

For monthly data: 1980:01-1981:11 (T = 23).

For daily data: 1950-01-01:1950-06-04 (T = 23).
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Estimation results.

Gretl output.

Model 1: OLS, using observations 1990–2012 (T = 23)
Dependent variable: Y

Coefficient Std. Error t-ratio p-value
const 38.7207 3.61477 10.7118 0.0000
X4 4.37920 1.55013 2.8250 0.0108
X2 0.0109351 0.00236651 4.6208 0.0002
X3 −13.6515 3.91865 −3.4837 0.0025

Note that while the regression model is written as:

Yt = β1 + β2 X2t + β3 X3t + β4 X4t + ut

the list of regressors in the estimation table is: const, X4, X2, X3. This is because the regressors appear in
the table in the same order we introduce them in the Gretl specification window (see Example 5.1.1). This fact
has to be taken into account to read the results, that is, β̂2 = 0.0109351 and β̂4 = 4.3792.
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Estimation results.

Gretl output.

Mean dependent var 39.66957 S.D. dependent var 7.372950
Sum squared resid 74.77556 S.E. of regression 1.983824
R2 0.937475 Adjusted R2 0.927603
F (3, 19) 94.95932 P-value(F ) 1.28e–11
Log-likelihood −46.19405 Akaike criterion 100.3881
Schwarz criterion 104.9301 Hannan–Quinn 101.5304
ρ̂ 0.563845 Durbin–Watson 0.882646

ρ̂ =
∑T

t=2
ûtût−1∑T

t=2
û2

t−1
Durbin-Watson:

∑T

t=2
(ût−ût−1)2∑T

t=1
û2

t

These results appear only when the data set structure is time series. The
Durbin-Watson autocorrelation test will be studied in Lesson 7.
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Presentation of results.

The estimation results are usually summarized writing down the Sample
Regression Function along with the standard error of the estimators, the
coefficient of determination and the Sum of Squares Residuals.

Summary.

p̂izzai = 342.885
(72.343)

+ 1.83248
(0.46430)

incomei − 7.57556
(2.3170)

agei i = 1, . . . , 40

R2 = 0.329 SSR = 635636.7

(standard error in parentheses)
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Presentation of results.

If we are working with time series data, the same information is presented but
adding the value of the Durbin-Watson statistic (see Lesson 7).

Summary.

Ŷt = 38.7207
(3.614476)

+ 4.37920
(1.5501)

X4t + 0.0109351
(0.0023665)

X2t − 13.6515
(3.91865)

X3t

t = 1990, . . . , 2012 R2 = 0.937475 SCR = 74.77556 DW = 0.8832646

(standard error in parentheses)
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