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Learning objectives

• To analyse the functional form in Gretl.

• To identify the main elements of an econometric model.

• To understand the basic assumptions of the linear regression model.

• To interpret the coefficients of the regression model.

• To include qualitative explanatory variables in the model by means of dummy
variables.
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Econometric approach to model specification.

Econometric model.

Dependent variable = Systematic Part + Random Part

Systematic Part = f(explanatory variables)
Random Part = error term

Y = f(explanatory variables) + error term

Y = f(X2, X3, . . . , Xk) + u

Pilar González and Susan Orbe | OCW 2014 Lesson 4. Regression model: Specification 5 / 41



Econometric approach to model specification.

It is necessary to choose:

• Explanatory variables: quantitative and/or qualitative.

• Functional form f(.): linear, quadratic, logarithmic, ...

• The error term (or disturbance) distribution: mean, variance, ...
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Graphic analysis and functional form.

Example: household consumption function.

Economic model:

C = f(I) dC

dI
> 0 (marginal propensity to consume)

Econometric model:
C = f(I) + u

Income is a quantitative explanatory variable.

What about the functional form? How is the relationship between consumption
and income?

Tool: plot of consumption against income
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Graphic analysis and functional form.
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Functional form: linear.
Ci = β1 + β2 Ii + ui i = 1, 2, ..., N
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Graphic analysis and functional form.
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Functional form: quadratic.

Ci = β1 + β2 Ii + β3 I
2
i + ui i = 1, 2, ..., N
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Graphic analysis and functional form.
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Functional form: double logarithmic.

lnCi = β1 + β2 ln Ii + ui i = 1, 2, ..., N
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Graphic analysis and functional form.

Linear : Ci = β1 + β2 Ii + ui

Quadratic : Ci = β1 + β2 Ii + β3 I
2
i + ui

Log-Log : lnCi = β1 + β2 ln Ii + ui

Log-Linear : lnCi = β1 + β2 Ii + ui

Linear-Log : Ci = β1 + β2 ln Ii + ui

Is valid any functional form within the framework of the general linear regression
model?

Assumption. Linearity

The linear regression model must be linear in the coefficients.
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Graphic analysis and functional form.

Example 4.1. Graphic analysis and functional form.

1. Plotting functions using Gretl.

Example 4.1.1

2. Graphic analysis of data and functional form.

Example 4.1.2
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Qualitative explanatory variables.

Some examples:

• Gender, race, level of studies, position, location,...

• Seasonality, structural breaks (war/peace, crisis/no crisis, ...)

• Quantitative variables measured by intervals: income, age, ...
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Qualitative explanatory variables.

Example: Sales of a chain of shops.
A chain of shops with establishments in France, Spain and Italy wants to analyse the
factors that determine sales. They collect data from 350 shops on sales and average
income in the neighborhood where the shops are located.
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Qualitative explanatory variables.

Consider the simple regression model:
S = f(I) ⇒ Si = β1 + β2 Ii + ui i = 1, 2, . . . , 350
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Qualitative explanatory variables.
Now, have a look at this graph that includes information about the location of the
shops (Spain, France and Italy).
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⇒ Sales seem to be different in the three countries considered.
S = f(Income,Country)
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Qualitative explanatory variables.

Sales
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The “country” effect should be included in the econometric model as follows: the
marginal effect of income on sales is the same for Spain, Italy and France, but
given an income, the average level of sales is different in each country.
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Qualitative explanatory variables.

Tool to include qualitative explanatory variables in the model:

DUMMY VARIABLES

Dummy variables.

A dummy variable is a binary variable:

Di =
{ 1 if the characteristic is present in observation i

0 otherwise
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Qualitative explanatory variables.

In principle, we need as many dummy variables as categories of the qualitative
variable.

Example.

Number of categories: 3 ⇒ 3 Dummy variables

Iti =
{

1 i ∈ Italy
0 otherwise

Fi =
{

1 i ∈ France
0 otherwise

Ei =
{

1 i ∈ Spain
0 otherwise
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Qualitative explanatory variables.

Specification

We include in the model the intercept and as many dummy variables
as categories of the qualitative variable minus 1.

Si = β1 + β2 Iti + β3 Fi + β4 Ii + ui i = 1, 2, ..., 350

Si | i ε Italy = β1 + β2 + β4 Ii + ui

Si | i ε France = β1 + β3 + β4 Ii + ui

Si | i ε Spain = β1 + β4 Ii + ui
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Qualitative explanatory variables.

Graphic analysis.
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Qualitative explanatory variables.

Why not include all the dummy variables and the intercept in the model?

Si = β1 + β2 Iti + β3 Fi + β4 Ei + β5 Ii + ui i = 1, 2, ..., 350

Si | i ε Italy = β1 + β2 + β5Ii + ui

Si | i ε France = β1 + β3 + β5 Ii + ui

Si | i ε Spain = β1 + β4 + β5 Ii + ui

The coefficients β1, β2, β3, β4 are NOT identified in this model because
Fi + Iti + Ei = 1,∀i.

Assumption. NO perfect collinearity

There are not linear combinations among the regressors of the model.
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Generating dummy variables in Gretl.

Example 4.2. Design dummy variables in Gretl.

1. Enter dummy variables manually.
See Example 4.2.1 for applications.

2. Generate dummy variables for discrete variables.
See Example 4.2.2 for applications.

3. Define a dummy variable for a range of observations.
See Example 4.2.3 for applications.

4. Dummy variables generated by Gretl.
See Example 4.2.4 for applications.

5. Time trend variable.
See Example 4.2.5 for applications.
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Multiple Regression Model. Specification and assumptions.

Yi = β1 + β2 X2i + β3 X3i + . . . + βk Xki + ui i = 1, 2, . . . , N

• Y : dependent variable, endogeneous variable, regressand.

• Xj j = 1, . . . , k: explanatory variables, independent variables, regressors.

• βj j = 1, . . . , k: unknown coefficients.

• u: error term or disturbance (non observable).

• N : sample size.
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Multiple Regression Model. Specification and assumptions.

Systematic part: β1 + β2 X2i + β3 X3i + . . . + βk Xki

• Include all the relevant factors to determine sales and all the factors included
are relevant.

• Represents the expected behaviour of the dependent variable Y conditional on
the sample values of X:

E(Yi|X) = β1 + β2 X2i + β3 X3i + . . . + βk Xki ⇒ E(ui|X) = 0

Random part:

u is a non observable random variable that includes:
• factors other than income that affect sales not explicitly included in the model,
• uncertainty of economic relationships,
• small data discrepancies or measurement errors.
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Basic assumptions.

Assumption A1.

The model in the population can be written as:

Yi = β1 + β2 X2i + β3 X3i + . . .+ βk Xki + ui i = 1, 2, , . . . , N

where:
• X2, X3, . . . , Xk: regressors.

• β1, β2, β3, . . . , βk : unknown parameters of interest (constant).

• The model is linear in the coefficients.

• The model is well specified, that is, all the relevant factors are included in the
model and all the factors included in the model are relevant.
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Basic assumptions.

Assumption A.2. No perfect collinearity

In the sample, none of the explanatory variables is constant and there are no exact
linear relationship among the explanatory variables.

Example:

Salesi = β1 + β2 Ii + β3 Italyi + β4 Francei + β5 Spaini + ui i = 1, 2, . . . , N

Does this assumption hold if all the shops are located in Italy, France or Spain?

Example:
Salesi = β1 + β2 Pricei + ui i = 1, 2, , . . . , N

Does this assumption hold if all the firms set the same price?
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Basic assumptions.

Assumptions on the error term

A.3 Zero conditional mean:
E(ui|X2, X3, . . . , Xk) = E(u) = 0 ∀i = 1, 2, , . . . , N

A.4 Homoskedasticity: V (ui|X2, X3, . . . , Xk) = V (u) = σ2
u ∀i = 1, 2, , . . . , N

A.5 No serial correlation: cov(uiuj |X2, X3, . . . , Xk) = 0 ∀i 6= j

A.6 Normality: The errors ui are independent of X and identically normally
distributed.

ui ∼ NID(0, σ2
u) ∀i = 1, 2, , . . . , N
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Interpretation of the coefficients.

Given the assumptions of the GLRM,

E(Yi|X) = E[(β1 + β2X2i + . . .+ βkXki + ui)|X]

= β1 + β2 X2i + . . .+ βk Xki + E(ui|X)︸ ︷︷ ︸
=0

E(Yi|X) = β1 + β2 X2i + . . .+ βk Xki

E(Yi|X) is the Population Regression Function (PRF):
the expected value of Yi given the values of the explanatory variables.
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Interpretation of the coefficients.
The Simple Regression Model.

Yi = β1 + β2Xi + ui PRF: E(Yi|X) = β1 + β2Xi

where:
β1 : intercept of the population regression function.
β2 : slope of the population regression function.
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Interpretation of the coefficients.

The Multiple Regression Model.
The Population Regression Function:

E(Yi|X) = β1 + β2 X2i + . . .+ βk Xki

Let’s assume that all the regressors are quantitative explanatory variables.

. β1 = E[Yi|X2i = 0, . . . , Xki = 0]

β1 (intercept) is the expected value of Y when all the explanatory variables
equal 0.

. βj , j = 2, 3, . . . , k (slopes): the expected change (increase or decrease) in Y
resulting from changing Xj by one unit, holding the rest of the explanatory
variables constant.
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Interpretation of the coefficients.
1. The interpretation of the coefficients depends on the type of relationship

between the dependent variable and the regressor.

Functional form Partial effect Elasticity

Linear

Yi = β1 + β2Xi + ui β2 β2
X

Y

Quadratic

Yi = β1 + β2Xi + β3X
2
i + ui β2 + 2β3X (β2 + 2β3X)X

Y

Log-Log

lnYi = β1 + β2 lnXi + ui β2
Y

X
β2

Log-Linear
lnYi = β1 + β2Xi + ui β2 Y β2 X

Linear-Log

Yi = β1 + β2 lnXi + ui β2
1
X

β2
1
Y
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Interpretation of the coefficients.

2. Qualitative explanatory variables.

Consider the example about the chain of shops:

Si = β1 + β2 Iti + β3 Fi + β4 Ii + ui i = 1, 2, ..., 350

Population Regression Function.

E(Si|X) = E(β1 + β2 Iti + β3 Fi + β4 Ii + ui|X) = β1 + β2 Iti + β3 Fi + β4 Ii

Spain: E(Si|Ii, Iti = 0, Fi = 0) = β1 + β4 Ii.

Italy: E(Vi|Ii, Iti = 1, Fi = 0) = (β1 + β2) + β4 Ii

France: E(Vi|Ii, Iti = 0, Fi = 1) = (β1 + β3) + β4 Ii
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Interpretation of the coefficients.
Graphic analysis.
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Interpretation of the coefficients.

Coefficient of variable income.

. β4 = The expected change in the value of sales when income changes in
one unit holding the variable country fixed.

Intercept.

. β1 = E(Si|Ii = 0, Iti = 0, Fi = 0)

Expected value of sales in the Spanish shops when the value of income is zero.
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Interpretation of the coefficients.

Coefficients related to the dummy variables.

. β2, β3 do not have a slope interpretation because the dummy variables
are not continuous; they are binary variables.

Spain: E(Si|Ii, Iti = 0, Fi = 0) = β1 + β4 Ii

Italy: E(Si|Ii, Iti = 1, Fi = 0) = (β1 + β2) + β4 Ii

=⇒ β2 = E(Si|Ii, Iti = 1, Fi = 0)− E(Si|Ii, Iti = 0, Fi = 0)

=⇒ β2 = Expected difference in the value of sales between Italy and
Spain, holding variable income constant.

Pilar González and Susan Orbe | OCW 2014 Lesson 4. Regression model: Specification 39 / 41



Interpretation of the coefficients.

Spain:
E(Si|Ii, Fi = 0, Iti = 0) = β1 + β4 Ii

France:

E(Si|Ii, Fi = 1, Iti = 0) = (β1 + β3) + β4 Ii

=⇒ β3 = E(Si|Ii, Fi = 1, Iti = 0, )− E(Si|Ri, Fi = 0, Iti = 0)

=⇒ β3 = Expected difference in the value of sales between France and
Spain, holding variable income constant.
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