TRANSMISSIBLE GENETIC ELEMENTS: PLASMIDS, TRANSPOSONS & INTEGRONS

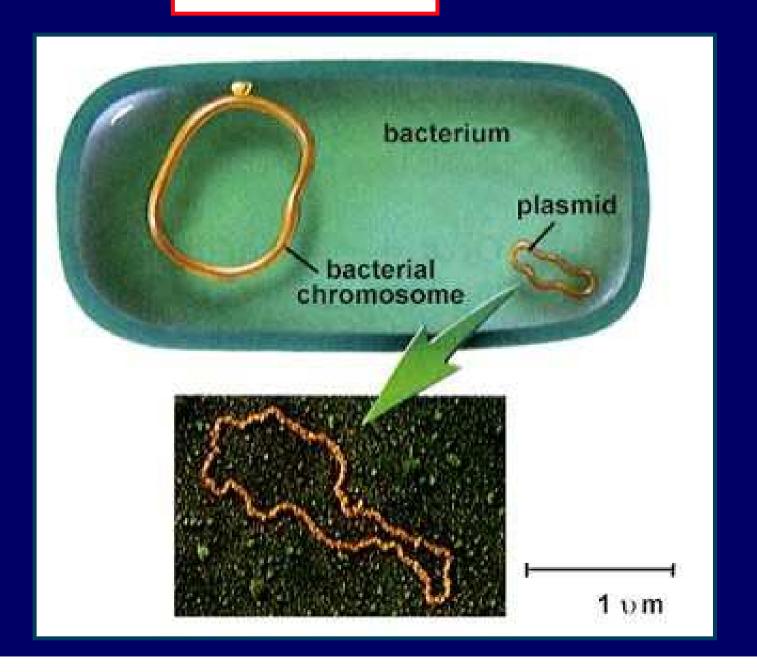
MOBILE GENETIC ELEMENTS

- 1 PLASMIDS
 - -MOST OFTEN CIRCULAR MOLECULES OF DOUBLE-STRANDED DNA
 - -VARY WIDELY IN SIZE
 - -SELF-TRANSMISSIBLE ELEMENTS
 - CONTAIN ANTIBIOTIC RESISTANCE GENES
 - TRANSFER OTHER STRUCTURES WITH RESISTANCE GENES
- 2 TRANSPOSONS
 - -TRANSFER RESISTANCE GENES BETWEEN PLASMIDS AND CHROMOSOME
 - -VARIETY OF STRUCTURES WITH SIMILAR CHARACTARISTICS TO THOSE DESCRIBED FOR SELF-TRANSMISSIBLE PLASMIDS: TYPE 1 (IS, Tn5), TYPE 2 (Tn3), TYPE 3 (Bacteriophage μ), TYPE 4 (Conjugatives)

MOBILE GENETIC ELEMENTS

3 INTEGRONS

- DNA SEGMENT CONTAINING GENES FOR:
 - -INTEGRASE
 - -PROMOTER
 - -INTEGRATION SITE


-PROPIERTIES: FORMS CLUSTERS OF RESISTANCE GENES (ALL UNDER THE CONTROL OF THE SAME PROMOTER)

-SIZE: 800-3900 bp.

Contain genetic information for the expression of a protein responsable of the uptake of IS and cassettes with antibiotic resistance genes

- integration: site-specific recombination
- promoters: P1
 - P2: increases the level of transcrition

PLASMIDS

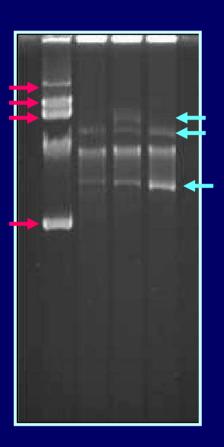
PROPIERTIES ENCODED BY PLASMIDS

- · CIRCULAR EXTRACHROMOSOMAL ELEMENTS
- · MAY ENCODE A VARIETY OF SUPPLEMENTARY GENETIC INFORMATION, INCLUDING THE INFORMATION OF SELF-TRANSFER TO OTHER CELLS
- · REPLICATE INDEPENDENTLY OF THE CHROMOSOME
- · UBIQUITOUS IN BACTERIA
- · BROAD RANGE OF SIZE AND NUMBER OF COPIES
- MANY ENCODE GENETIC INFORMATION FOR SUCH PROPIERTIES AS:
 - ·RESISTANCE TO ANTIBIOTICS
 - ·BACTERIOCIN PRODUCTION
 - ·RESISTANCE TO TOXIC METAL IONS
 - PRODUCTION OF TOXINS AND OTHER VIRULENCE FACTORS
 - REDUCED SENSITIVITY TO MUTAGENS
 - THE ABILITY TO DEGRADE COMPLEX ORGANIC MOLECULES

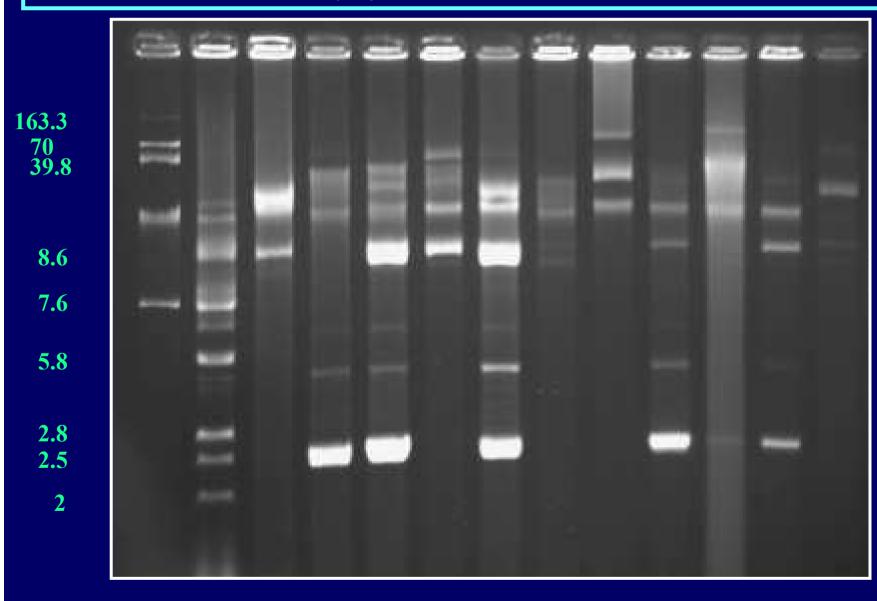
METHODS TO MAKE PLASMIDS VISIBLE

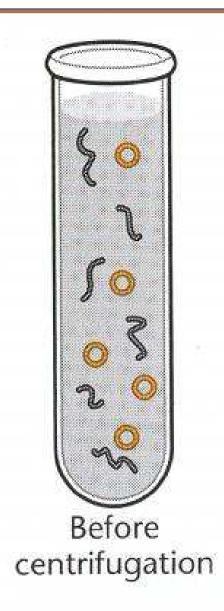
·AGAROSE GEL ELECTROPHORESIS AND PULSED FIELD GEL ELECTROFORESIS

• THE RATE OF MIGRATION OF DNA THROUGH AGAROSE DEPENDS ON THE SIZE OF THE FRAGMENT: THE SMALLER THE MOLECULE, THE FASTER IT RUNS


THE RATE OF MIGRATION IS ALSO AFFECTED BY THE SHAPE OF THE DNA MOLECULE: CIRCULAR MOLECULES MIGRATE DIFFERENTLY FROM LINEAR FRAGMENTS WITH THE SAME MOLECULAR WEIGHT (CCC, OC and L: circular and covalently closed, open circular and linear forms)

Chromosomal DNA


- 1. λ digested with *Hind*III endonuclease
- 2 &3. pSU615 plasmid DNA (CCC, OC & L forms)



- → E. coli control strain plasmids
- → A. baumannii plasmids

PLASMID PROFILES FROM DIFFERENT A baumannii ISOLATES AND THEIR CORRESPONDING SIZE (Kb)

Protein and membrane

Linear and nicked circular DNA

Covalently closed circular DNA

RNA

After centrifugation

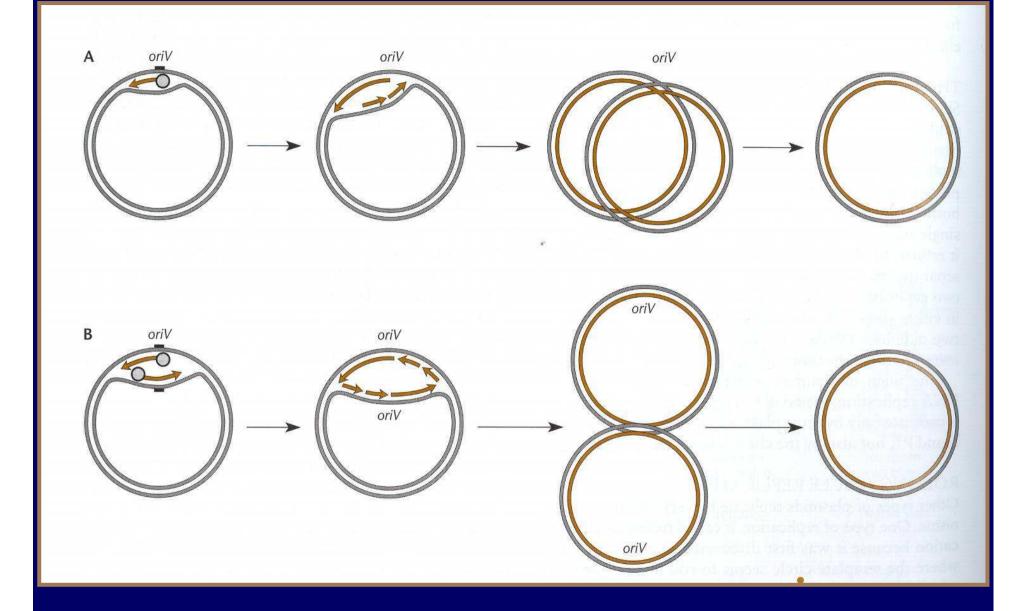
PURIFICATION OF PLASMID DNA BY CAESIUM CHLORIDE-ETHIDIUM BROMIDE DENSITY GRADIENT CENTRIFUGATION

0,05 pm

PROPIERTIES OF PLASMIDS: REPLICATION

- INDEPENDENT OF THE CHROMOSOME REPLICATION
- THEY ARE REPLICONS: HAVE AT LEAST ONE ORIGIN OF REPLICATION, OR ori SITE
- EACH TYPE OF PLASMIDS REPLICATES BY ONE OF TWO GENERAL MECHANISMS DETERMINED BY ITS ori REGION:
 - -orN: plasmid replication origin
 - -oriT: site at which DNA transfer initiates in plasmid conjugation
 - *THETA (θ) REPLICATION:
 - THE MOST COMMON IN GRAM-NEGATIVE BACTERIA
 - USED BY ColE1, RK2, F, P1, AND THE CROMOSOME
 - * ROLLING-CIRCLE REPLICATION:
 - GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA
 - RC PLASMIDS

ori REGION


1. HOST RANGE:

- -ColE1: NARROW HOST RANGE (E. coli & closely related bacteria)
- -RK2: BROAD HOST RANGE (the most common in gram-negative bacteria)
- -RSF1010: gram-negative and gram-positive bacteria
- -PLASMIDS FROM GRAM-NEGATIVE BACTERIA DO NOT REPLICATE IN GRAM-POSITIVE ONES

2. REGULATION OF COPY NUMBER:

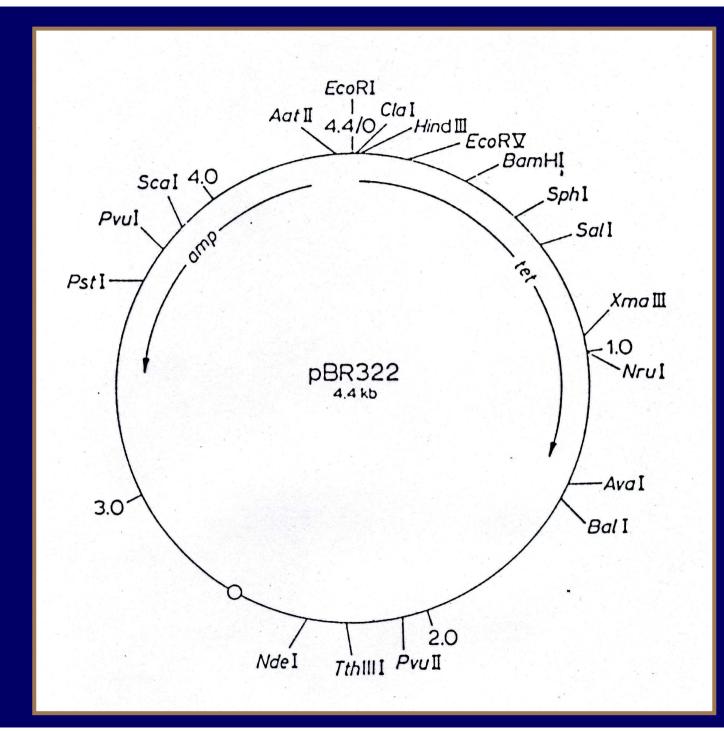
RELAXED PLASMIDS: HIGH-COPY NUMBER (eg. ColE1)

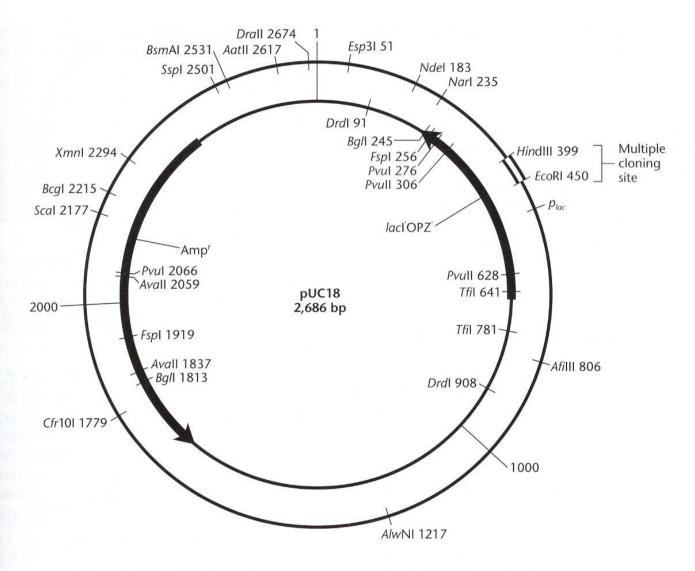
STRINGENT PLASMIDS: LOW-COPY NUMBER (eg. F)

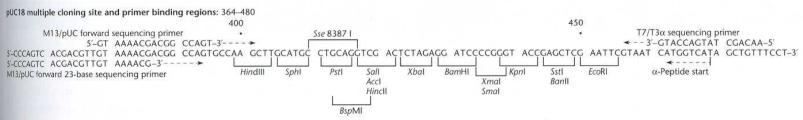
PLASMID INCOMPATIBILITY

- · MANY BACTERIA CONTAIN MORE THAN ONE TYPE OF PLASMID BUT NOT ALL TYPES OF PLASMIDS CAN STABLY COEXIST IN A BACTERIA
- SOME TYPES WILL INTERFIERE WITH EACH OTHER'S REPLICATION OR PARTITIONING: if two such plasmids are introduced into the same cell, one or the other will be lost at a higher than normal rate when the cell divides.

TWO PLASMIDS THAT CANNOT STABLY COEXIST ARE MEMBERS OF THE SAME INCOMPATIBILITY (Inc.) GROUP


- INCOMPATIBILITY IS DUE TO REPLICATION CONTROL (par): two plasmids that share the same mechanism of replication control will be incompatible.


PLASMIDS AS CLONING VECTORS IN RECOMBINANT DNA TECHNOLOGY


CLONING VECTOR: AUTONOMOUSLY REPLICATING DNA (REPLICON) INTO WHICH OTHER DNAS CAN BE INSERTED

ADVANTAGES AS CLONING VECTORS:

- -THEY ARE "MADE TO ORDER"
- -DO NOT KILL THE HOST CELL
- -EASY TO PURIFY TO OBTAIN THE CLONED DNA
- -CAN BE MADE RELATIVELY SMALL

TRANSPOSONS

PROPIERTIES

- · DNA ELEMENTS THAT HOP, OR TRANSPOSE, FROM ONE PLACE IN DNA TO ANOTHER ("JUMPING GENES")
- · KNOWN TO EXIST IN ALL ORGANISMS ON EARTH
- · TRANSPOSITION: THE MOVEMENT BY A TRANSPOSON
- · TRANSPOSASES: THE ENZYMES THAT PROMOTE TRANSPOSITION
- ·MOVE AMONG DIFFERENT GENERA OF BACTERIA
- ·TYPES:
 - TRUE TRANSPOSONS
 - ·RETROTRANSPOSONS (BEHAVE LIKE RNA RETROVIRUSES)

PROPIERTIES

STRUCTURE:

·SIZE:

- •SMALL (ABOUT 1000 bp LONG, CARRY ONLY GENES FOR THE TRANSPOSASES)
- ·LARGE (CARRY ANTIBIOTIC RESISTANCE GENES): CONJUGATIVE TRANSPOSONS ARE VERY LARGE AS THEY CARRY tra GENES AS WELL AS TRANSPOSITION FUNCTIONS
- ·ALL CONTAIN INVERTED REPEATS AT THEIR ENDS
- PRESENCE OF SHORT DIRECT REPEATS OF THE TARGET DNA THAT BRACKET THE TRANSPOSONS
- ·TYPES OF BACTERIAL TRANSPOSONS:
 - ·INSERTION SEQUENCE (IS) ELEMENTS
 - ·COMPOSITE TRANSPOSONS: FORMED BY TWO IS ELEMENTS OF THE SAME TYPE
 - ·NONCOMPOSITE TRANSPOSONS

INTEGRONS

DESCRIPTION

5' END

-LENGHT: 1,3 Kb

- STRUCTURE:

- -INTEGRASE PROMOTER
- int GENE CODING FOR AN INTEGRASE OR RECOMBINASE

(SITE-SPECIFIC RECOMBINATION)

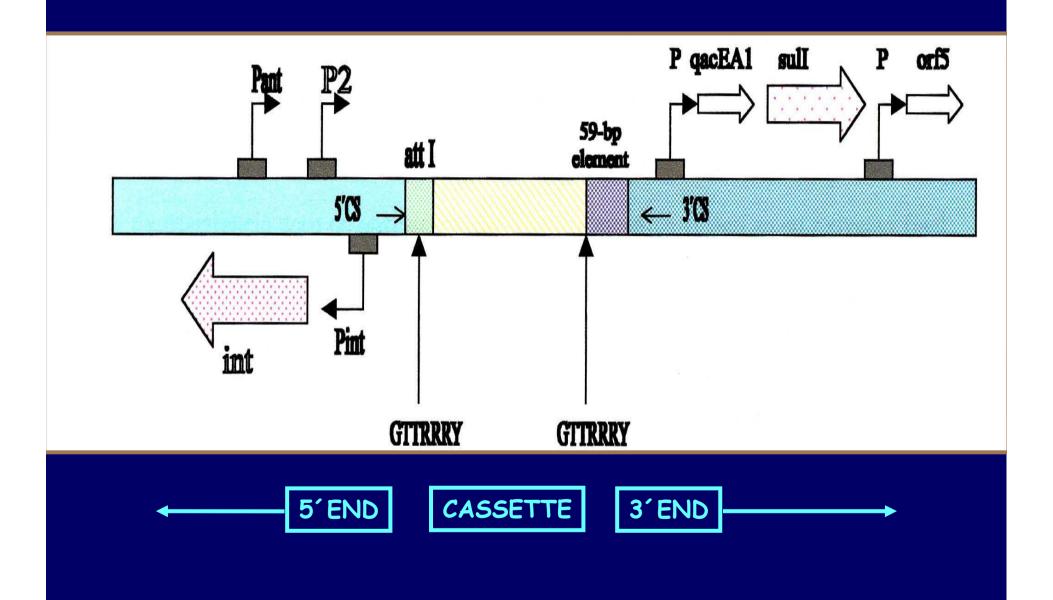
- attI SITE (TARGET FOR INSERTION SEQUENCES)
- -PROMOTER (1/2) FOR THE RESISTANCE GENES

DESCRIPTION

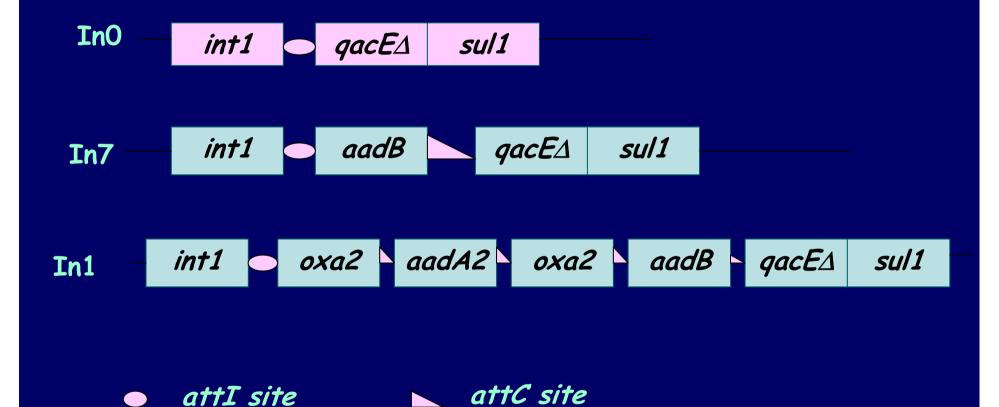
3' END

-LENGHT: FROM 2 Kb

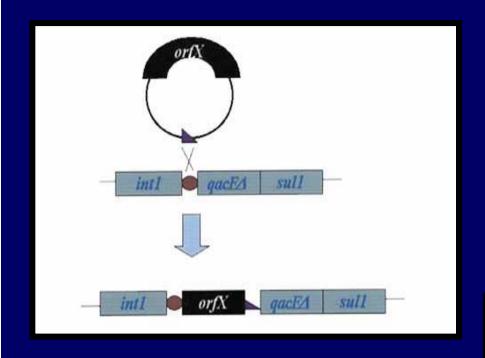
- STRUCTURE:

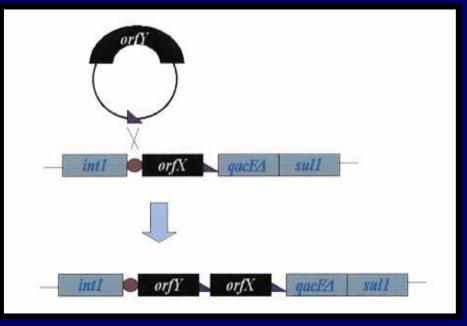

- qacEAI GENE (RESISTANCE TO QUATERNARY AMONIUM COMPOUNDS)
- suli GENE (RESISTANCE TO SULPHONAMIDES)
- -OPER READING FRAME orf 5 (UNKNOWN FUNTION)

DESCRIPTION


INSERTED SEQUENCES / GENETIC CASSETTES

- SIZE: FEW HUNDRED BASE PAIRS
- attC SITE :3'END, 59 bp, ONE RECOMBINATION SITE BUT NO PROMOTER
- EXIST AS FREE MOLECULES: CIRCULAR DNA WITHOUT REPLICATION/TRANSPOSITION CAPABILITY.
- INSERTION:
 - * ALWAYS IN THE SAME DIRECTION
 - * NEW GENES ALWAYS ARE INSERTED AT THE BEGINNING
 - * ONCE INSERTED THEY CAN CHANGE ITS POSITION
- GENES AT ENDING POSITIONS HAVE LOWER LEVEL OF EXPRESSION THAN PREVIOUS GENES


STRUCTURE



INTEGRONS

INTEGRATION OF CASSETTES

TYPES OF INTEGRONS

CLASS 1

- -MOST FREQUENTLY FOUND IN CLINICAL ISOLATES
- -TYPE 1 INTEGRASE

CLASS 2

- -TYPE 2 INTEGRASE (intI 2)
- -40% HOMOLOGY WITH intI 1 GENE
- -Tn7 AND DERIVATIVES

CLASS 3

- -TYPE 3 (intI 3)
- -61% HOMOLOGY WITH intI 1 GENE

RESISTANCE GENES DETECTED IN INTEGRONS

1.AMINOGLYCOSIDES

aadA (SPECTINOMYCIN & STREPTOMYCIN)

aadB (KANAMICIN, GENTAMICIN & TOBRAMICIN)

aacA7 (AMIKACIN & TOBRAMICIN)

2.BETALACTAMS

OXA, IMP & VIM-TYPE β-LACTAMASES

3.ERITROMYCIN

ereA GENE

4.TRIMETHOPRIM

dhfrV GENE

5.CHLORANPHENICOL

catB3 GENE

6. ANTISEPTICS, DISINFECTANTS

BACTERIAL INTEGRONS

GRAM-NEGATIVE

- -ENTEROBACTERIA: E.coli, Klebsiella spp., Proteus spp...
- -NON-FERMENTING RDOS: P. aeruginosa & A. baumannii

GRAM-POSITIVE

Staphylococcus aureus
Enterococcus

MYCOBACTERIA: Mycobacterium fortuitum

DETECTION OF INTEGRONS BY PCR

```
CLASS 1 5'CS (-GGCATCCAAGCAGCAAG-)
3'CS (-AAAGCAGACTTGACCTGA-)
(conserved sequences)
```

```
INT72 (-GCACTCCATGGAATATCCAGGGCCATTCCCG-)
INT74 (-GCTTGCTTGCAGGGATATAATCAATATCGC-)
(dihydropholate reductase)
```

```
INT3L (-GCAGGGTGTGGACGAATACG-)
INT3R (-ACAGACCGAGAAGGCTTATG-)
(int13)
```

CARACTERIZATION OF INTEGRONS FROM AMPLIFIED DNA

1. ENDONUCLEASE DIGESTION

TARGET DNA: 5μ I AMPLIFICATED DNA (final volume, 25μ I) ENZYMES: Hinf I, HaeIII, BstEII

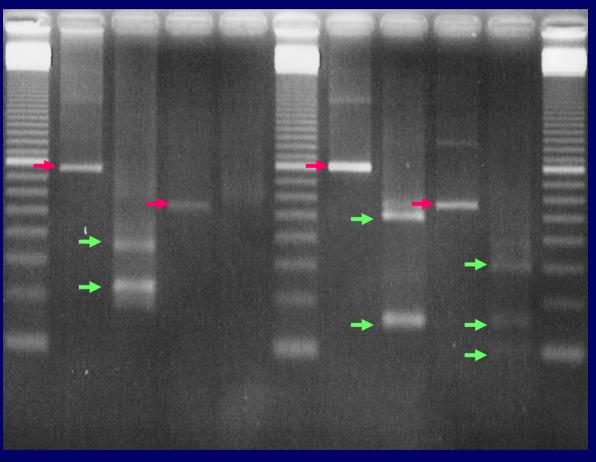
2. DNA SEQUENCING

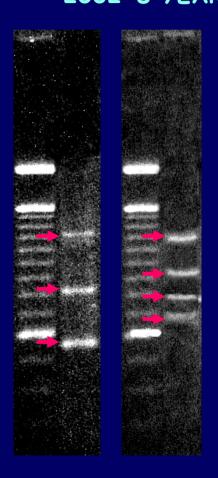
1.PURIFICATION OF THE AMPLIFICATION FRAGMENT 2.SEQUENCE DETERMINATION

DETECTION OF INTEGRONS: HIBRIDATION WITH DNA PROBES

CLASS 1

int21 PROBE (specific for intII)
(-CCTGGCTTCAGGAGATCGGAAGACCTCGGC-)


CLASS 2


inf7 PROBE (specific for intI2)
(-GCGATATTGATTATATCCCTGCAAGCAAGC-)

INTEGRONS DETECTED IN CLINICAL ISOLATES OF A. baumannii

1999 YEAR

2002-8 YEARS

- → INTEGRONS
- → ENDONUCLEASE DIGESTIONS