
USEFUL TOOLS TO CONTROL NOSOCOMIAL INFECTIONS

NOSOCOMIAL INFECTIONS: PREVALENCE

- 1. AFFECT DEVELOPING AND NON-DEVELOPING COUNTRIES
 - Highest level in Eastern Mediterranean countries and Southeast Asia
 - Prevalence in Europe: 8%
- 2. MAJOR CAUSE OF MORBIDITY AND MORTALITY LEADING TO AN ENORMOUS INCREASE IN THE COST OF HOSPITAL CARE
- 3. CLINICAL FEATURES ON NOSOCOMIAL INFECTIONS:
 - -Urinary tract infections, lower tract respiratory infections and wounds infections.
 - -Intensive Care Units, Surgical wards
 - -Immunocompromised patients (risk factors: age, pre-existing diseases,
 - medical or surgical procedures used, drug treatment....)

COMMONLY OCCURRING MICRO-ORGANISMS IN HOSPITAL INFECTION

1. URINARY TRACT INFECTIONS

- Escherichia coli
- Klebsiella, Serratia,
- Proteus spp.
- Pseudomonas aeruginosa
- Enterococcus spp
- Candida albicans

2. RESPIRATORY INFECTIONS

- Haemophilus influenzae
- Streptococcus pneumoniae
- Staphylococcus aureus
- Enterobacteriaceae
- Respiratory viruses
- Fungi

- 3. WOUNDS AND SKIN SEPSIS:
 - -Staphylococcus aureus
 - Streptococcus pyogenes
 - Escherichia coli
 - Proteus spp
 - Anaerobes
 - Enterococcus spp
 - Coagulase-negative staphylococci
- 3. GASTRO-INTESTINAL INFECTIONS:
 - Salmonella serotypes
 - Clostridium difficile
 - Viruses (Norwalk-like)

The impact of nosocomial infections

- 1. LEADING MORTALITY CAUSE
- 2. ENORMOUS INCREASE IN THE COST OF HOSPITAL CARE: extra days/extra charges (drugs, diagnostic techniques)
- 3. CONTINUOUS PRESSURE: elderly patients, prevalence of chronic disease, increase of invasive techniques and treatments
- 4. EMERGENCE OF NEW HEALTH HAZARDS FOR THE COMMUNITY

RESERVOIRS OF NOSOCOMIAL INFECTION

1. PATIENT: SELF-INFECTION FROM THE PATIENT'S OWN FLORA

- 2. OTHER PATIENTS, MEDICAL STAFF: CROSS-INFECTION PATIENT TO PATIENT (CAUSED BY "HOSPITAL" STRAINS)
- 3. EQUIPMENT AND MATERIALS IN USE IN HOSPITALS (WATER, DISINFECTANTS, BEDS, FOOD, DUST....)

ROUTES OF TRANSMISSION

- 1. AIR-BORNE
- 2. CONTACT SPREAD
- 3. FOOD-BORNE SPREAD
- 4. BLOOD-BORNE SPREAD
- 5. SELF-INFECTION AND CROSS-INFECTION

FACTORS

1. MICROORGANISM

2. PATIENT-SUSCEPTIBILITY

AGE IMMUNE DEFENSES UNDERLYING DISEASE ANTIBIOTIC, IMMUNOSUPPRESSOR TREATMENTS MALNUTRITION

- 3. ENVIRONMENT (WATER, AIR, FOOD)
- 4. RESISTANCE TO ANTIBIOTICS

DEFINITIONS

ISOLATE: PURE CULTURE OF BACTERIA OBTAINED BY SUBCULTURE OF A SINGLE COLONY FROM A PRIMARY ISOLATION PLATE, PRESUMED TO BE DERIVED FROM A SINGLE ORGANISM.

EPIDEMIOLOGICALLY RELATED ISOLATES: DERIVED FROM A COMMON SOURCE AND CULTURED FROM SPECIMENS COLLECTED FROM PATIENTS, FOMITES, OR THE ENVIRONMENT DURING A DISCRETE TIME FRAME OR FROM A WELL-DEFINED AREA AS PART OF AN EPIDEMIOLOGICAL INVESTIGATION.

GENETICALLYRELATEDISOLATES(CLONES):INDISTINGISHABLEFROMEACHOTHERBYAVARIETYOFGENETICTESTSORTHATARESOSIMILARTHATTHEYAREPRESUMEDTOBEDERIVEDFROMACOMMONPARENT

DEFINITIONS

OUTBREAK: INCREASED INCIDENCE OF AN INFECTIOUS DISEASE IN A SPECIFIC PLACE DURING A GIVEN PERIOD THAT IS ABOVE THE BASELINE RATE FOR THAT PLACE AND TIME FRAME

STRAIN: ISOLATE OR GROUP OF ISOLATES THAT CAN BE DISTINGUISHED FROM OTHER ISOLATES OF THE SAME GENUS AND SPECIES BY PHENOTYPIC OR GENOTYPIC CHARACTERISTICS OR BOTH.

* A STRAIN IS A DESCRIPTIVE SUBDIVISION OF A SPECIES

DEFINITIONS

OUTBREAK STRAINS :

- * ISOLATES OF THE SAME SPECIES THAT ARE BOTH EPIDEMIOLOGICALLY RELATED AND GENETICALLY RELATED
- * PRESUMED TO BE CLONALLY RELATED

ENDEMIC STRAINS:

- * ISOLATES RECOVERED FREQUENTLY FROM INFECTED PATIENTS IN A PARTICULAR HEALTH CARE SETTING OR COMMUNITY INDISTINGUISHABLE OR CLOSELY RELATED TO EACH OTHER
- * PRESUMED TO BE CLONALLY RELATED

TYPING TECHNIQUES/OBJETIVES

1. DETERMINATION OF THE ORIGIN AND EXTENSION OF AN INFECTIOUS OUTBREAK

2.ESTABLISHMENT OF CROSS-INFECTIONS (PATIENT TO PATIENT)

3. STUDY EVOLUTION OF INFECTION ALONG TIME

4. EVALUATION OF <u>ANTIBIOTIC TREATMENT EFICACY</u>, LEVELS OF RESISTANCE AND PATIENT'S IMMUNE RESPONSE

QUALITY ASPECTS OF MICROBIAL TYPING

TYPABILITY
 REPRODUCIBILITY
 DISCRIMINATORY CAPACITY
 APPROPIATE COST
 STANDARDISATION

PHENOTYPIC TECHNIQUES

BIOTYPING ANTIBIOGRAM TYPING SEROTYPING PHAGE-TYPING PROTEIN TYPING

> DISADVANTAGES REPRODUCIBILITY DISCRIMINATORY CAPACITY NON-TYPEABLE ISOLATES COST

GENOTYPIC TYPING METHODS: ADVANTAGES

1. RAPIDITY

2. SENSITIVITY

3. SPECIFICITY

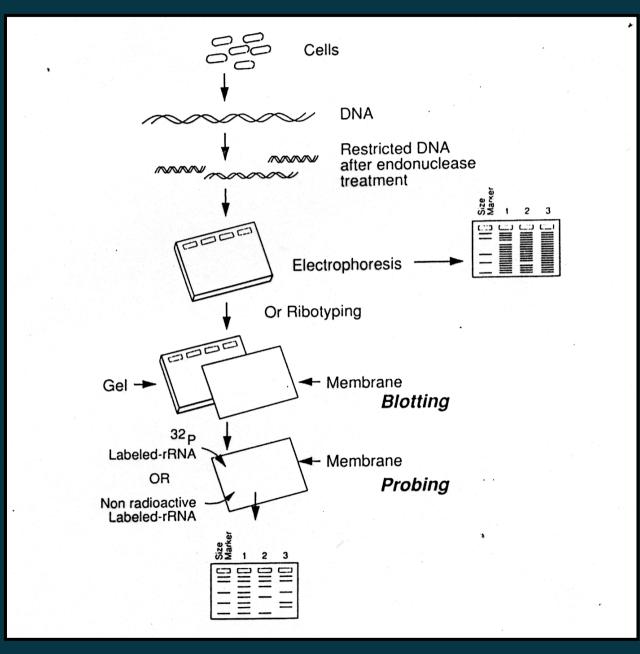
4. RESULTS ARE NON-DEPENDENT ON PHENOTYPIC EXPRESSION

GENOTYPIC TYPING METHODS

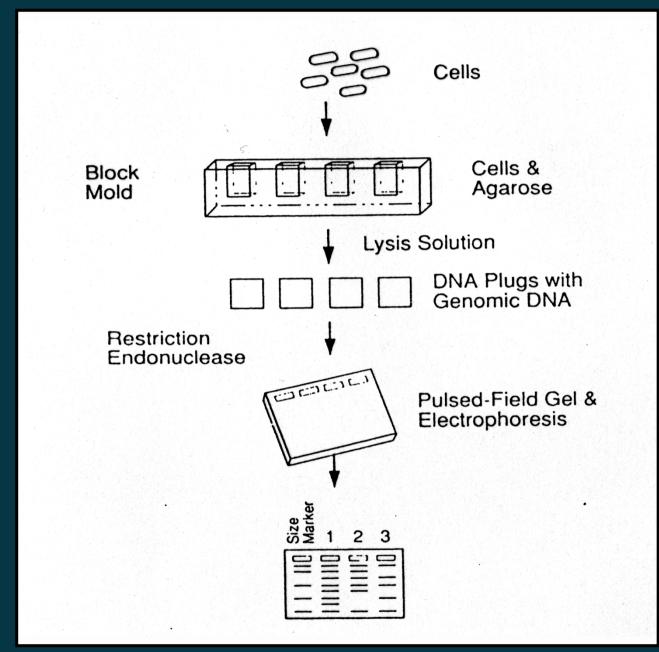
- 1.RESTRICTION ENZYMES
 - -REA/RFLP
 - -RIBOTIPING
 - -PFGE

2.PLASMID ANALYSIS

3.POLYMERASE CHAIN REACTION -MAAP (AP-PCR, RAPD, DAF-PCR) - REPETITIVE SEQUENCES (ERIC & REP-PCR) -PCR-RIBOTIPING -MULTIPLEX-PCR -NESTED-PCR


4. DNA SEQUENCING: SLST & MLST

1. RESTRICTION ENZYMES -REA/RFLP -RIBOTYPING -PFGE


RFLP

RIBOTYPING

PFGE APPLICATIONS

1.- IDENTIFYING RESTRICTION FRAGMENT LENGHT POLYMORPHISMS (USING LOW-FREQUENCY CUTTING ENZYMES, TYPICALLY WITH LESS THAN 30 CLEAVAGE SITES PER GENOME)

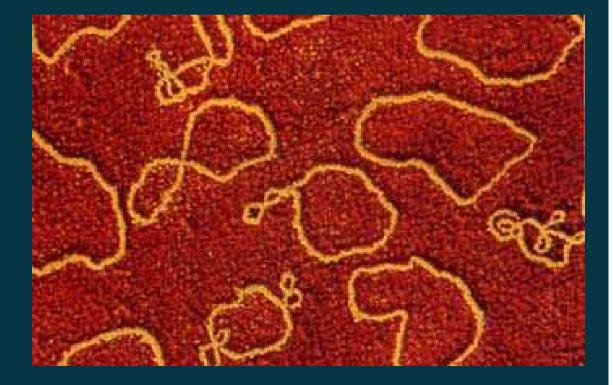
2.- CONSTRUCTION OF PHYSICAL MAPS

3.-DETERMINING THE NUMBER AND SIZE OF CHROMOSOMES (ELECTROPHORETIC KARYOTYPE)

4.- STUDY OF HIGH MOLECULAR WEIGHT PLASMIDS

5.- OTHERS: CLONING LARGE DNA USING ARTIFICIAL CHROMOSOMES; DETECTING "IN VIVO" CHROMOSOME BREAKAGE AND DEGRADATION

PFGE: ANALYSIS AND INTERPRETATION OF DATA


RESTRICTION PATTERNS: RELATED ISOLATES: SAME PATTERNS NON RELATED ISOLATES: DIFFERENT PATTERNS

MINOR PATTERNS DIFFERENCES ARISE FROM:

- * POINT MUTATIONS
- * INSERTIONS
- * DELECTIONS

CRITERIA FOR INTERPRETING PFGE PATTERNS			
CATEGORY	No. GENETIC DIFFERENCES	No. DIFFERENT FRAGMENTS	INTERPRETATION
INDISTINGUISHABL	E O	Ο	PART OF THE OUTBREAK
CLOSELY RELATED	1	2-3	PROBABLY PART OF THE OUTBREAK
POSSIBLY RELATED	2	4-6	POSSIBLY PART OF THE OUTBREAK
DIFFERENT	≥3	≥ 7	NOT PART OF THE OUTBREAK

2. PLASMID ANALYSIS

PROPIERTIES ENCODED BY PLASMIDS

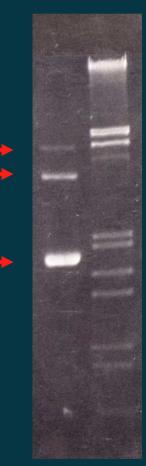
- · CIRCULAR EXTRACHROMOSOMAL ELEMENTS
- MAY ENCODE A VARIETY OF SUPPLEMENTARY GENETIC INFORMATION, INCLUDING THE INFORMATION OF SELF-TRANSFER TO OTHER CELLS
- · REPLICATE INDEPENDENTLY OF THE CHROMOSOME
- · UBIQUITOUS IN BACTERIA
- · BROAD RANGE OF SIZE AND NUMBER OF COPIES
- MANY ENCODE GENETIC INFORMATION FOR SUCH PROPIERTIES AS:
 - ·RESISTANCE TO ANTIBIOTICS
 - ·BACTERIOCIN PRODUCTION
 - ·RESISTANCE TO TOXIC METAL IONS
 - ·PRODUCTION OF TOXINS AND OTHER VIRULENCE FACTORS
 - ·REDUCED SENSITIVITY TO MUTAGENS
 - •THE ABILITY TO DEGRADE COMPLEX ORGANIC MOLECULES

METHODS FOR PLASMID ANALYSIS

1. CONVENTIONAL LYSIS METHODS (BY ALKALY, SDS, PROTEINASE K....)

2. COMMERCIAL KITS

DISADVANTAGES

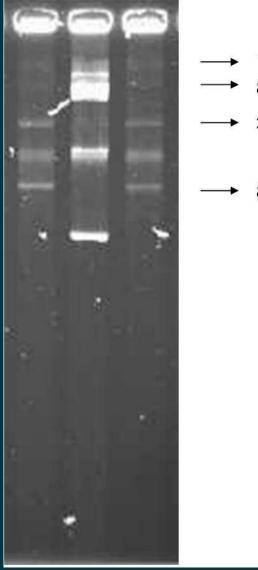

- NOT VERY USEFUL VERY CLINICAL ISOLATES - REPRODUCIBILITY -YIELD - PLASMID INSTABILITY

LIMITATIONS OF CONVENTIONAL TECHNIQUES

1. DETERMINATION OF THE EXACT SIZE OF THE PLASMID: PLASMID CONFORMATION AFFECTS ELECTROPHORETIC MOBILITY

1st- CCC (CIRCULAR COVALENTLY CLOSED)

2nd- OC/ L (OPEN CIRCULAR /LINEAR)


LIMITATION OF CONVENTIONAL TECHNIQUES

2-MEGAPLASMIDS:

- NOT VISIBLE
- EASY BREAKAGE

Conventional agarose gel electrophoresis

Arrows indicate the size (in Kb) of visible plasmids *

PFGE/ S1 NUCLEASE DIGESTION TECHNIQUE TO MAKE MEGAPLASMIDS VISIBLE

1-INTACT PLASMIDIC DNA IS OBTAINED

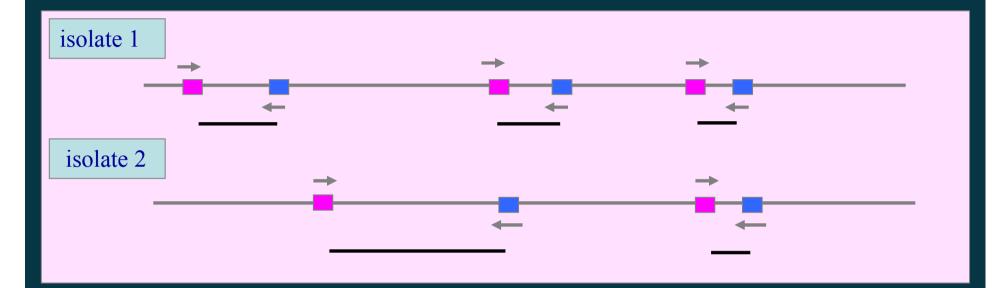
2-S1 DIGESTION (ONLY L FORMS ARE VISIBLE)

3-PFGE (MEGAPLASMIDS ARE VISIBLE)

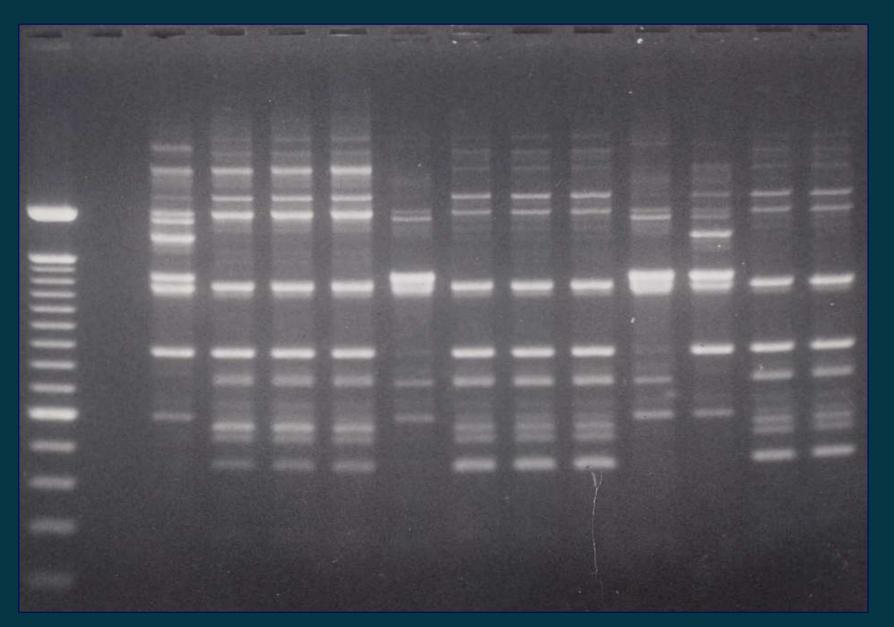
3. POLYMERASE CHAIN REACTION

-MAAP (AP-PCR, RAPD, DAF-PCR) - REPETITIVE SEQUENCES (ERIC & REP-PCR) -PCR-RIBOTYPING -MULTIPLEX-PCR -NESTED-PCR -AFLP

POLYMERASE CHAIN REACTION


ADVANTAGES

•SENSITIVITY •RAPID •DETECTION OF FASTIDIOUS ORGANISMS •NO NEED OF VIABLE CELLS •DETECTION OF UNKNOWN SEQUENCES


DISADVANTAGES

•FALSE-POSITIVE/NEGATIVE RESULTS •REPRODUCIBILITY •INTERLABORATORY VALIDATION •CLINICAL INTERPRETATION

PCR fingerprinting

-MAAP (AP-PCR, RAPD, DAF-PCR) - REPETITIVE SEQUENCES (ERIC & REP-PCR)

Different amplification profiles corresponding to different clones

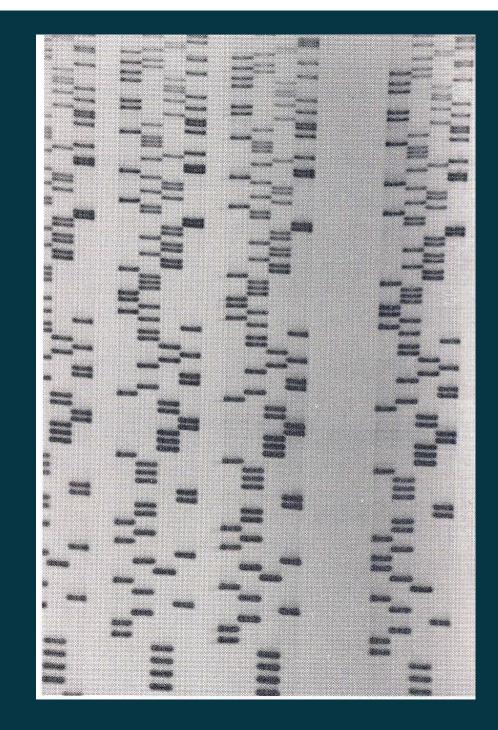
PCR fingerprinting

ADVANTAGES: 100% TIPABILITY RAPIDITY MÍNIMUM SAMPLE NEEDED COST USEFUL FOR COMPARISON

ADVANTAGES: REPRODUCIBILITY CONTAMINATION FALSE-POSITIVE RESULTS LABORATORY EASY TRAINING

PCR fingerprinting: RESULT DEPENDS ON

1.LABORATORY


2. QUALITY OF DNA

3. REACTION PARAMETERS: Enzyme Primers CIMg₂ Cycling conditions

4.CONTROLS

4. DNA SEQUENCING: - SLST - MLST

SINGLE-LOCUS SEQUENCE TYPING

-BASED ON INDIVIDUAL NUCLEOTIDE DIFFERENCES IN GENES CODING FOR:

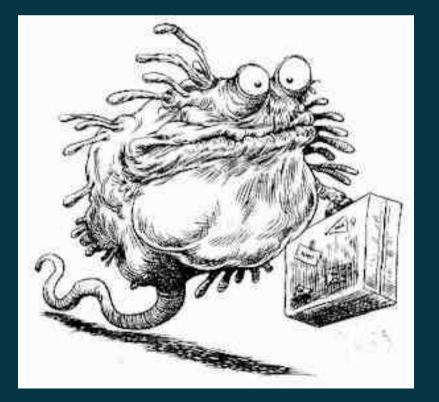
- VIRULENCE,
- PATOGENICITY,
- ANTIBIOTIC RESISTANCE

-ANALYSIS OF :

- POLIMORPHISMS OF A SINGLE NUCLEOTIDE
- REPETITIVE-SEQUENCE AREAS

MULTILOCUS SEQUENCE TYPING

-ANALYSIS OF A MAJOR PORTION OF GENOME COMPARING REGIONS OF 400-500 bp CORRESPONDING TO "HOUSEKEEPING" GENES (>7)


-POLYMORPHISMS OF SEQUENCES ARE CONSIDERED ALLELES

-ISOLATES ARE DEFINED BY ITS ALLELE PROFILES CORRESPONDING TO SEQUENCED LOCUS

CONCLUSIONS

- 1. NOSOCOMIAL INFECTIONS ARE EMERGING INFECTIOUS DISEASES
- 2. RESISTANCE TO ANTIBIOTICS IS A HEALTH HAZARD FOR THE COMMUNITY

3. GENETIC TECHNOLOGY IS A VERY USEFUL TOOL TO CONTROL THE SPREAD OF MICROORGANISMS IN THE HOSPITAL ENVIRONMENT

