Tema 3: Autómatas

6. Construcción de autómatas.

Al igual que sucedía con las máquinas de Turing, es posible construir autómatas que actúen de una forma determinada, una vez que se fije el **estado de partida**, que será aquel en el que se encuentre el mecanismo cuando empiece a actuar.

Ejemplo 1. Construimos un autómata que admita como entradas "0" y "1" y que partiendo del estado e_0 proceda de la manera siguiente:

- 1. Si en la sucesión de entradas aparecen dos "0" consecutivos, imprime a partir de ese instante sólo "0".
- 2. Si en la sucesión de entradas aparece tres "1" consecutivos y previamente no han aparecido dos "0" seguidos, imprime un "1" hasta que salgan dos "0" consecutivos.
- 3. En el resto de las situaciones imprime "0".

Las funciones δ y λ vienen dadas por:

Ejemplo 2. Construimos un autómata que simula la actuación de una máquina expendedora de café y café con leche con las siguientes características:

1) El precio del café sólo es 0,55 euros.

Proyecto OCW de la UPV/EHU. M.A.García y T. Ramírez

- 2) El precio del café con leche es 0,65 euros.
- 3) La máquina funciona con monedas de 0,05, 0,20 y 0,50 euros.
- 4) La máquina dispone de tres botones: uno negro para el café, uno blanco para el café con leche y uno rojo que nos permite recuperar el dinero introducido ó nos da el dinero que sobra tras ser suministrado nuestro café ó café con leche.

Es obvio que el conjunto de entradas que admite es

$$S_1 = \{M5, M25, M50, B_B, B_N, B_R\}$$

donde: Mi = moneda de 0,0i euros, $B_B =$ botón blanco, $B_N =$ botón negro y $B_R =$ botón rojo. El conjunto de salidas será

$$S_2 = \{N, C, CL, M5, M10, M15, M20, M25, M30, M35, M40, M45, M50, M55, M60, M65\},$$

con N = nada C = caf'e, CL = caf'e con leche y Mi = cambios de i c´entimos de euro. El conjunto de estados es $E = \{e_0, \dots, e_{13}\}$. Las funciones δ y λ vienen dadas por las tablas:

δ	M5	M20	M50	BN	B_B	BR
$\overline{e_0}$	e_1	e_4	e_{10}	e_0	e_0	e_0
e_1	e_2	e_5	e_{11}	e_1	e_1	e_0
e_2	e_3	e_6	e_{12}	e_2	e_2	e_0
e_3	e_4	e_7	e_{13}	e_3	e_3	e_0
e_4	e_5	e_8	e_{13}	e_4	e_4	e_0
e_5	e_6	e_9	e_{13}	e_5	e_5	e_0
e_6	e_7	e_{10}	e_{13}	e_6	e_6	e_0
e_7	e_8	e_{11}	e_{13}	e_7	e_7	e_0
e_8	e_9	e_{12}	e_{13}	e_8	e_8	e_0
e_9	e_{10}	e_{13}	e_{13}	e_9	e_9	e_0
e_{10}	e_{11}	e_{13}	e_{13}	e_{10}	e_{10}	e_0
e_{11}	e_{12}	e_{13}	e_{13}	e_0	e_{11}	e_0
e_{12}	e_{13}	e_{13}	e_{13}	e_1	e_{12}	e_0
e_{13}	e_{13}	e_{13}	e_{13}	e_2	e_0	e_0

Proyecto OCW de la UPV/EHU. M.A.García y T. Ramírez

λ	M5	M20	M50	B_N	B_B	B_R
$\overline{e_0}$	N	N	N	N	N	N
$\overline{e_1}$	N	N	N	N	N	M5
$\overline{e_2}$	N	N	N	N	N	M10
e_3	N	N	N	N	N	M15
$\overline{e_4}$	N	N	M5	N	N	M20
e_5	N	N	M10	N	N	M25
$\overline{e_6}$	N	N	M15	N	N	M30
$\overline{e_7}$	N	N	M20	N	N	M35
e_8	N	N	M25	N	N	M40
e_9	N	N	M30	N	N	M45
e_{10}	N	M5	M35	N	N	M50
e_{11}	N	M10	M40	C	N	M55
e_{12}	N	M15	M45	C	N	M60
e_{13}	M5	M20	M50	C	CL	M65

Ejemplo 3. Construimos un autómata A que tenga como alfabeto de entrada y salida a $\{0,1\}$ y que al serle introducida una palabra de Ω_{S_1} de longitud mayor o igual a 2, partiendo del estado e_1 , ofrezca como salida la palabra que tiene "0" en las dos primeras posiciones y a partir de la tercera posisción las mismas letras que la palabra introducida. Como nos fijan $S_1 = S_2 = \{0,1\}$, para definir A nos falta determinar $E = \{e_1, e_2, e_3\}$ y las funciones δ y λ viene dadas por