Tema 3: Autómatas

5. Minimización de un autómata.

Cuando tenemos un autómata $A_1 = (S_1, S_2, E, \delta, \lambda)$, podemos considerar entre los estados de E la siguiente relación de equivalencia:

$$\forall e_1, e_2 \in E, \quad e_1 \sim e_2 \quad \Longrightarrow \quad \psi_{e_1} = \psi_{e_2}.$$

Entonces, se puede definir E/\sim , que es el conjunto cociente de esa relación. Las clases de equivalencia de E/\sim vendrán dadas por

$$[e] = \{e' \in E | e \sim e'\}.$$

Definición. Sea $A = (S_1, S_2, E, \delta, \lambda)$ un autómata. Se dice que A está dado en forma reducida si $[e] = \{e\}$, para todo $e \in E$.

Nos interesa saber si dado un autómata cualquiera existe otro equivalente a él que esté en forma reducida. La respuesta es afirmativa.

Teorema 5.1. Sea $A=(S_1,S_2,E,\delta,\lambda)$ un autómata. Entonces, existe $\overline{A}=(S_1,S_2,\overline{E},\overline{\delta},\overline{\lambda})$ autómata equivalente a A que está en forma reducida.