Prueba de autoevaluación Matriculación de turismos 1

Instrucciones

- Para comenzar la prueba de autoevaluación debes presionar el botón "Comenzar".
- Rellena las cuestiones.
- Para finalizar la prueba de autoevaluación debes presionar "Terminar".
- El número de respuestas correctas en relación al total aparece en la celda "Score".
- Todas las preguntas valen 1 punto.
- Presiona el botón "Correct" para ver las respuestas correctas.
- La prueba comienza en la siguiente página.
- Tiempo para hacer la prueba: 30 minutos.

Enunciado

Abre el fichero de datos guardado como matriculaciones.gdt para analizar la matriculación de turismos en la CAV como una función lineal del precio del petróleo.

Modelo de regresión lineal simple

- 1. El modelo de regresión lineal simple es:
 - (a) $MATCAV_t = \beta_1 + \beta_2 + u_t$
 - (b) $MATCAV_t = \beta_1 + \beta_2 \ price_p_t + u_t$
 - (c) $MATCAV_t = \beta_2 price_p_t$
 - (d) $MATCAV_t = \beta_1 + \beta_2 \ price_p_t$
- 2. La variable explicada es:
 - (a) β_2
- (b) $price_p$ (c) MATCAV (d) u
- 3. La variable explicativa es:
 - (a) β_2

- (b) $price_p$ (c) MATCAV (d) u

- 4. La perturbación aleatoria es:
 - (a) β_2
- (b) $price_p$ (c) MATCAV (d) u
- 5. ¿Cuál es el tamaño muestral?

T =

6. ¿Cuál es el estimador MCO de β_2 ?

(a)
$$\hat{\beta}_2 = \frac{\sum MATCAV_t \ price_p_t}{\sum price_p_t^2}$$

(b)
$$\hat{\beta}_2 = \frac{\sum MATCAV_t \ price_-p_t}{\sum MATCAV_t^2}$$

(c)
$$\hat{\beta}_2 = \frac{\sum (MATCAV_t - \overline{MATCAV}) (price_p_t - \overline{price_p})}{\sum (MATCAV_t - \overline{MATCAV})^2}$$

(d)
$$\hat{\beta}_2 = \frac{\sum (MATCAV_t - \overline{MATCAV}) (price_p_t - \overline{price_p})}{\sum (price_p_t - \overline{price_p})^2}$$

7. ¿Cuál es el estimador MCO de β_1 ?

(a)
$$\hat{\beta}_1 = \overline{MATCAV} + \hat{\beta}_2 \, \overline{price_p}$$

(b)
$$\hat{\beta}_1 = MATCAV_t + \hat{\beta}_2 \ price_p_t$$

(c)
$$\hat{\beta}_1 = \overline{MATCAV} - \hat{\beta}_2 \, \overline{price_p}$$

(d)
$$\hat{\beta}_1 = MATCAV_t - \hat{\beta}_2 \ price_p_t$$

- 8. La recta de regresión muestral MCO es:
 - (a) $MATCAV_t = 6436, 84 44, 1921 \, price_p_t$

(b)
$$\widehat{MATCAV}_t = 6436, 84 - 44, 1921 \, price_p_t$$

(c)
$$\widehat{MATCAV}_t = 6436, 84 - 44, 1921 \widehat{price}_p_t$$

(d)
$$MATCAV_t = -44,1921 + 6436,84 \, price_p_t$$

- 9. ¿Cuál es la media del número de matriculaciones durante todo el periodo?
- (a) 3893,463 (b) 6436,84 (c) 1255,115 (d) 966,7194

10.	¿Cuál es la desviación típica del número de matriculaciones?			
	(a) $3893,463$	(b) 6436,84	(c) $1255,115$	$(\mathbf{d})\ 966{,}7194$
11.	¿Cuál es el núme	ero de matriculaci	ones estimado en	enero de 2007
	(a) 6436,84	(b) 4570,750	(c) 5366,972	(d) 2778,452

- 12. ¿Cuál es el residuo correspondiente a septiembre de 2008?
 - (a) -796,362 (b) 118,250 (c) 1958,046 (d) -371,483
- 13. ¿Cuál es el valor del coeficiente de determinación?
 - (a) 0,412299 (b) 0,406755 (c) 41,2299 (d) 0,412299%
- 14. El coeficiente de determinación es:
 - (a) La ratio entre la varianza de price-p y la varianza de MATCAV.
 - (b) El porcentaje de la variabilidad del precio que explica el número de matriculaciones.
 - (c) La proporción de la variabilidad muestral del número de matriculaciones explicada por la variabilidad del precio del barril Brent.
 - (d) La diferencia entre la variabilidad total del número de matriculaciones y la variabilidad del precio del barril Brent.

- 15. ¿Cuál de las siguientes afirmaciones es cierta?
 - (a) $R^2 = r_{MATCAV nrice n}^2$ (b) $R^2 = r_{MATCAV nrice n}^2$
 - (c) $R^2 = cov(MATCAV, price_p)$ (d) $R^2 > r_{MATCAV, price_p}$
- 16. ¿Cuál es el estimador insesgado de la varianza de las perturbaciones?

 - (a) $\frac{\sum \hat{u}_t^2}{T}$ (b) $\frac{\sum \hat{u}_t^2/q}{T-k}$ (c) $\frac{\sum \hat{u}_t^2}{T-k}$ (d) $\frac{\sum \hat{u}_t}{T-k}$
- 17. ¿En cuánto se estima la varianza de las perturbaciones?

 - (a) 966,7194 (b) 917240,019 (c) 99061922 (d) 934546.398
- 18. ¿Cuál es el estimador insesgado de la varianza de $\hat{\beta}_2$?

 - (a) $\frac{\sigma^2}{\sum (price_p_t \overline{price_p})^2}$ (b) $\frac{\hat{\sigma}^2}{\sum (price_p_t \overline{price_p})^2}$
 - (c)
- $\frac{\sigma^2}{\sum (MATCAV_t \overline{MATCAV})^2} \frac{\hat{\sigma}^2}{\sum (MATCAV_t \overline{MATCAV})^2}$
- 19. ¿En cuánto se estima la varianza de $\hat{\beta}_2$?
- (a) 5,12464 (b) 1255,115 (c) 26,2619351 (d) 20,8137

20. ¿Cuál es la hipótesis nula para contrastar si la recta de regresión poblacional pasa por el origen de coordenadas?

(a)
$$\beta_1 = \beta_2 = 0$$
 (b) $\beta_1 + \beta_2 = 0$ (c) $\beta_2 = 0$ (d) $\beta_1 = 0$

21. ¿Cuál es el estadístico para contrastar si la recta de regresión poblacional pasa por el origen de coordenadas?

(a)
$$t = \frac{\hat{\beta}_1}{\hat{\sigma}_{\hat{\beta}_1}} \stackrel{H_0}{\sim} t(T-k)_{\alpha}$$
 (b) $t = \frac{\hat{\beta}_2}{\hat{\sigma}_{\hat{\beta}_2}} \stackrel{H_0}{\sim} t(T-k)$

(c)
$$t = \frac{\hat{\beta}_1}{\hat{\sigma}_{\hat{\beta}_1}} \stackrel{H_0}{\sim} t(T - k)$$

(d)
$$\frac{R^2}{(1-R^2)/(T-k)} \stackrel{H_0}{\sim} \mathcal{F}(1, T-k)$$

22. ¿Se puede concluir que la recta de regresión poblacional pasa por el origen de coordenadas? ($\alpha=5\%$)

23. ¿Cuál es la hipótesis nula para contrastar la significatividad de la variable *price_p*?

(a)
$$\beta_1 = \beta_2 = 0$$
 (b) $\beta_1 + \beta_2 = 0$ (c) $\beta_2 = 0$ (d) $\beta_1 = 0$

24. ¿Cuál es el estadístico para contrastar la significatividad de la variable price_p y su distribución?

(a)
$$t = \frac{\hat{\beta}_2}{\hat{\sigma}_{\hat{\beta}_2}} \overset{H_0}{\sim} t(T - k)_{\alpha}$$
 (b) $t = \frac{\hat{\beta}_2}{\hat{\sigma}_{\hat{\beta}_2}} \overset{H_0}{\sim} t(T)$

(c)
$$t = \frac{\hat{\beta}_2}{\hat{\sigma}_{\hat{\beta}_2}^2} \stackrel{H_0}{\sim} t(T - k)$$

(d)
$$\frac{R^2}{(1-R^2)/(T-k)} \stackrel{H_0}{\sim} \mathcal{F}(1, T-k)$$

25. ¿Es la variable *price_p* significativa ($\alpha = 5\%$)?