FAIRCHILD

SEMICONDUCTOR ${ }_{\text {TM }}$

DM7404

Hex Inverting Gates

General Description

This device contains six independent gates each of which performs the logic INVERT function.

Features

- Alternate Military/Aerospace device (5404) is available.

Contact a Fairchild Semiconductor Sales
Office/Distributor for specifications.

Connection Diagram

Order Number 5404DMQB, 5404FMQB, DM5404J, DM5404W, DM7404M or DM7404N See Package Number J14A, M14A, N14A or W14B
Function Table

$$
\mathbf{Y}=\overline{\mathbf{A}}
$$

Inputs	Output
\mathbf{A}	\mathbf{Y}
L	H
H	L

H = High Logic Level
L = Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	

DM54 and 54
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM5404			DM7404			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
l OS	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-55	mA
	Output Current		DM74	-18		-55	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			6	12	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			18	33	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		22	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.

FAIRCHILD
 SEMICONDUCTOR ${ }_{\text {TN }}$
 DM7402
 Quad 2-Input NOR Gates

General Description

This device contains four independent gates each of which performs the logic NOR function.

Features

- Alternate Military/Areospace device (5402) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.
Connection Diagram
Dual-In-Line Package

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	

DM54 and 54
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM5402			DM7402			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
los	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max } \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-55	mA
	Output Current		DM74	-18		-55	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			8	16	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			14	27	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		22	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.

FAIRCHILD

SEMICONDUCTOR ${ }_{\text {im }}$

DM7400

Quad 2-Input NAND Gates

General Description

This device contains four independent gates each of which performs the logic NAND function.

Features

- Alternate Military/Aerospace device (5400) is available

Contact a Fairchild Semiconductor Sales
Office/Distributor for specifications.

Connection Diagram

Order Number 5400DMQB, 5400FMQB, DM5400J, DM5400W or DM7400N See Package Number J14A, N14A or W14B
Function Table
$\mathrm{Y}=\overline{\mathrm{AB}}$

Inputs		Output
A	B	Y
L	L	H
L	H	H
H	L	H
H	H	L

H = High Logic Leve
L = Low Logic Level

Absolute Maximum Ratings (Note 1)

Operating Free Air Temperature Range

Recommended Operating Conditions

Symbol	Parameter	DM5400			DM7400			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.4			-0.4	mA
I_{OL}	Low Level Output Current			16			16	mA
T_{A}	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{1}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
l_{OS}	Short Circuit	$\begin{aligned} & V_{\mathrm{Cc}}=\operatorname{Max} \\ & \text { (Note 3) } \end{aligned}$	DM54	-20		-55	mA
	Output Current		DM74	-18		-55	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{Cc}}=\mathrm{Max}$			4	8	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			12	22	mA

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (See Section 1 for Test Waveforms and Output Load)

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		22	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			15	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Note 3: Not more than one output should be shorted at a time.

FAIRCHILD

DM7408

Quad 2－Input AND Gates

General Description

This device contains four independent gates each of which performs the logic AND function．

Features

－Alternate Military／Aerospace device（5408）is available
Contact a Fairchild Semiconductor Sales
Office／Distributor for specifications．

Connection Diagram

Order Number 5408DMQB，5408FMQB，DM5408J，DM5408W or DM7408N See Package Number J14A，N14A or W14B

Function Table

Inputs		Output
A	B	Y
L	L	L
L	H	L
H	L	L
H	H	H

$\mathrm{H}=$ High Logic Level L＝Low Logic Level

Absolute Maximum Ratings (Note 1)

Supply Voltage	7 V
Input Voltage	5.5 V
Operating Free Air Temperature Range	

DM54 and 54
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
DM74
Storage Temperature Range
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	DM5408			DM7408			Units
		Min	Nom	Max	Min	Nom	Max	
V_{CC}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V_{IH}	High Level Input Voltage	2			2			V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage			0.8			0.8	V
I_{OH}	High Level Output Current			-0.8			-0.8	mA
I_{OL}	Low Level Output Current			16			16	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	-55		125	0		70	${ }^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ (\text { Note } 2) \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-12 \mathrm{~mA}$				-1.5	V
V_{OH}	High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.4	3.4		V
V_{OL}	Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.2	0.4	V
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=5.5 \mathrm{~V}$				1	mA
I_{IH}	High Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.4 \mathrm{~V}$				40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Low Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$				-1.6	mA
l OS	Short Circuit	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & (\text { Note 3) } \end{aligned}$	DM54	-20		-55	mA
	Output Current		DM74	-18		-55	
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs High	$\mathrm{V}_{\mathrm{CC}}=$ Max			11	21	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs Low	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$			20	33	mA

Switching Characteristics

Symbol	Parameter	Conditions	Min	Max	Units
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Low to High Level Output	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=400 \Omega \end{aligned}$		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time High to Low Level Output			19	ns

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time.

Absolute Maximum Ratings ${ }_{\text {(Note 1) }}$

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrica Characteristics tables are not guaranteed at the absolute maximum ratings The "Recommended Operating Conditions" table will define the conditions or actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions	Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{IH}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.36	mA
l OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 3)	-20		-100	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs HIGH	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$		3.1	6.2	mA
$\mathrm{I}_{\text {CCL }}$	Supply Current with Outputs LOW	$\mathrm{V}_{\text {CC }}=$ Max		4.9	9.8	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

Symbol	Parameter	$\mathrm{R}_{\mathrm{L}}=\mathbf{2 k}$ /				Units
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
		Min	Max	Min	Max	
${ }_{\text {t }}$	Propagation Delay Time LOW-to-HIGH Level Output	3	11	4	15	ns
$\overline{\mathrm{t}_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	3	11	4	15	ns

Absolute Maximum Ratings ${ }_{\text {(Note 1) }}$

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrica Characteristics tables are not guaranteed at the absolute maximum ratings The "Recommended Operating Conditions" table will define the conditions or actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions	Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.2	mA
$\mathrm{IIH}^{\text {I }}$	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$			40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.6	mA
Ios	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3)	-20		-100	mA
$\mathrm{I}_{\mathrm{CCH}}$	Supply Current with Outputs HIGH	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)		6.1	10	mA
$\mathrm{I}_{\mathrm{CCL}}$	Supply Current with Outputs LOW	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 5)		9	15	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: $\mathrm{I}_{\mathrm{CCH}}$ is measured with all outputs OPEN, one input at each gate at 4.5 V , and the other inputs grounded.
Note 5: $I_{C C L}$ is measured with all outputs OPEN and all inputs grounded.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Other Input		18		23	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Low		17		21	ns
${ }_{\text {tPLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Other Input		10		15	ns
$\bar{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	High		12		15	ns

AC Electrical Characteristics（Note 4）
CD4001BC：$T_{A}=25^{\circ} \mathrm{C}$ ，Input $\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns} . \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=200 \mathrm{k}$ ．Typical temperature coefficient is $0.3 \% /{ }^{\circ} \mathrm{C}$ ．

Typical Performance Characteristics (Continued)
Typical Transfer Characteristics

Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the internal carry C 2 . The values at $\mathrm{C} 2, \mathrm{~A} 3, \mathrm{~B} 3, \mathrm{~A} 4$, and B4 are then used to determine outputs $\sum 3, \sum 4$, and C 4

Logic Diagram

Absolute Maximum Ratings(Note 1)
Supply Voltage
Input Voltage
7V
7 V
Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Min}, \mathrm{I}_{\text {I }}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$		2.7	3.4		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
1	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \end{aligned}$	A or B			0.2	mA
			C0			0.1	
$\overline{I_{\mathrm{H}}}$	HIGH Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V} \end{aligned}$	A or B			40	$\mu \mathrm{A}$
			C0			20	
$I_{\text {IL }}$	LOW Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	A or B			-0.8	mA
			C0			-0.4	
los	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}$ (Note 3)		-20		-100	mA
${ }^{\text {CC1 }}$	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 4)			19	34	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 5)			22	39	mA
Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second. Note 4: $\mathrm{I}_{\mathrm{C} 1}$ is measured with all outputs open, all B inputs LOW and all other inputs at 4.5 V , or all inputs at 4.5 V . Note 5 : $I_{\mathrm{CC} 2}$ is measured with all outputs OPEN and all inputs grounded.							

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$							
Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	C0 to $\sum 1$ or $\sum 2$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	C0 to $\sum 1$ or $\sum 2$		24		30	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	C0 to $\sum 3$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	CO to $\sum 3$		24		30	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	C0 to $\sum 4$		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	CO to $\mathrm{\Sigma} 4$		24		30	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	$\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ to \sum_{i}		24		28	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	$\mathrm{A}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}$ to Σ_{i}		24		30	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	C 0 to C 4		17		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	C 0 to C 4		17		25	ns
${ }_{\text {tPLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	A_{i}, B_{i} to C4		17		24	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	A_{i}, B_{i} to C4		17		26	ns

Physical Dimensions inches (millimeters) unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

Function Table									
	$\begin{gathered} \text { Comp } \\ \text { Inp } \end{gathered}$	aring			ascadin Inputs			Outputs	
A3, B3	A2, B2	A1, B1	A0, B0	$\mathrm{A}>\mathrm{B}$	A < B	A $=$ B	A > B	A < B	A = B
A3 > B3	X	X	X	X	X	X	H	L	L
A3 < B3	x	x	x	x	x	x	L	H	L
A3 $=$ B3	A2 > B2	x	x	x	x	x	H	L	L
A3 $=$ B3	A2 < B2	X	X	X	X	X	L	H	L
A3 $=$ B3	A2 $=$ B2	A1 > B1	X	X	X	X	H	L	L
A3 $=$ B3	A2 $=$ B2	A1 < B1	x	x	x	x	L	H	L
A3 $=$ B3	A2 $=$ B2	A1 $=$ B1	A0 > B	X	X	X	H	L	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	$\mathrm{A} 11=\mathrm{B} 1$	A $0<B 0$	x	x	x	L	H	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	A1 $=$ B1	$A 0=B 0$	H	L	L	H	L	L
A3 $=$ B3	A2 $=$ B2	A1 $=$ B1	A0 $=$ B0	L	H	L	1	H	L
A3 $=$ B3	$\mathrm{A} 2=\mathrm{B} 2$	A1 $=$ B1	A0 $=$ B 0	L	L	H	L	L	H
A3 $=$ B3	A2 $=$ B2	A1 $=$ B1	A0 $=$ B0	X	x	H	L	L	H
A3 $=$ B3	A2 $=$ B2	A1 $=$ B1	A0 $=$ B0	H	H	L	L	L	L
A3 $=$ B3	A2 $=$ B2	A1 $=$ B1	A0 $=B 0$	L	L	L	H	H	L

Logic Diagram

Absolute Maximum Ratings(Note 1)
Supply Voltage
Input Voltage
7V
7 V
Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions		Min	Typ (Note 2)	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I	Input Current @ Max Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V} \end{aligned}$	A $<$ B			0.1	mA
			A $>\mathrm{B}$			0.1	
			Others			0.3	
$\overline{I_{\mathrm{IH}}}$	HIGH Level Input Current	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I}=2.7 V \end{aligned}$	A $<$ B			20	$\mu \mathrm{A}$
			$A>B$			20	
			Others			60	
$\overline{I_{L L}}$	LOW Level Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} \\ & \mathrm{~V}_{\mathrm{I}}=0.4 \mathrm{~V} \end{aligned}$	A $<$ B			-0.4	mA
			A > B			-0.4	
			Others			-1.2	
I OS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)		-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 4)			10	20	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 4: I_{CC} is measured with all outputs OPEN, $\mathrm{A}=\mathrm{B}$ grounded and all other inputs at 4.5 V .

Switching Characteristics at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$									
Symbol	Parameter	From Input	To Output	Number of Gate Levels	$\mathrm{R}_{\mathrm{L}}=\mathbf{2 k}$ k				Units
					$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
					Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Any A or B Data Input	$\begin{aligned} & A<B, \\ & A>B \end{aligned}$	3		36		42	ns
			$\mathrm{A}=\mathrm{B}$	4		40		40	
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Any A or B Data Input	$\begin{aligned} & A<B, \\ & A>B \end{aligned}$	3		30		40	ns
			$A=B$	4		30		40	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$\mathrm{A}<\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	$A>B$	1		22		26	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	$\mathrm{A}<\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	A $>$ B	1		17		26	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$A=B$	$A=B$	2		20		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	$A=B$	$A=B$	2		17		26	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$\mathrm{A}>\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	A $<$ B	1		22		26	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	$\mathrm{A}>\mathrm{B}$ or $\mathrm{A}=\mathrm{B}$	$\mathrm{A}<\mathrm{B}$	1		17		26	ns

Absolute Maximum Ratings(Note 1)
Supply Voltage
Input Voltage
7 V
Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.25	0.4	V
	Output Voltage			0.35	0.5	
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
1	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{H}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.4	mA
IOS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)	-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)		9	14	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 4: I_{CC} is measured with all outputs OPEN and all inputs GROUNDED.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Data to Output		30		35	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Data to Output		30		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Strobe to Output		20		25	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Strobe to Output		25		35	ns

FAIRCHILD

SEMICロNDபСTロRTN

DM74LS138 • DM74LS139 Decoder/Demultiplexer

General Description

These Schottky-clamped circuits are designed to be used in high-performance memory-decoding or data-routing applications, requiring very short propagation delay times. In high-performance memory systems these decoders can be used to minimize the effects of system decoding. When used with high-speed memories, the delay times of these decoders are usually less than the typical access time of the memory. This means that the effective system delay introduced by the decoder is negligible.
The DM74LS138 decodes one-of-eight lines, based upon the conditions at the three binary select inputs and the three enable inputs. Two active-low and one active-high enable inputs reduce the need for external gates or inverters when expanding. A 24 -line decoder can be implemented with no external inverters, and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing applications.
The DM74LS139 comprises two separate two-line-to-fourline decoders in a single package. The active-low enable input can be used as a data line in demultiplexing applications.

All of these decoders/demultiplexers feature fully buffered inputs, presenting only one normalized load to its driving circuit. All inputs are clamped with high-performance Schottky diodes to suppress line-ringing and simplify system design.

August 1986

Revised March 2000

Features

- Designed specifically for high speed:

Memory decoders
Data transmission systems
DM74LS138 3-to-8-line decoders incorporates 3 enable inputs to simplify cascading and/or data reception

- DM74LS139 contains two fully independent 2-to-4-line decoders/demultiplexers
- Schottky clamped for high performance

■ Typical propagation delay (3 levels of logic)

$$
\text { DM74LS138 } 21 \mathrm{~ns}
$$

DM74LS139 21 ns

- Typical power dissipation

DM74LS138 32 mW
DM74LS139 34 mW

Ordering Code:

Order Number	Package Number	Package Description
DM74LS138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS138SJ	M16D	16 -Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS138N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
DM74LS139M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS139SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS139N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Function Tables

DM74LS138												
Inputs					Outputs							
	Enable		Sele									
G1	G2 (Note 1)	C	B	A	YO	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	H	H	H	H	H	L	H	H	H	H
H	L	H	L	L	H	H	H	H	L	H	H	H
H	L	H	L	H	H	H	H	H	H	L	H	H
H	L	H	H	L	H	H	H	H	H	H	L	H
H	L	H	H	H	H	H	H	H	H	H	H	L

DM74LS139

Inputs			Outputs			
Enable	Select					
G	B	A	Y0	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

Logic Diagrams

Absolute Maximum Ratings(Note 2)

Supply Voltage

Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

DM74LS138 Electrical Characteristics

Symbol	Parameter	Conditions	Min		Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$	2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{V}_{\mathrm{IH}}=\mathrm{Min}$		0.35	0.5	V
		$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{IH}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.36	mA
Ios	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=\operatorname{Max}$ (Note 4)	-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\operatorname{Max}$ (Note 5)		6.3	10	mA

Note 3: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 5: I_{CC} is measured with all outputs enabled and OPEN.

DM74LS138 Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	Levels of Delay	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$				Units
				$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
				Min	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	2		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	2		27		40	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output	3		18		27	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output	3		27		40	ns
${ }_{\text {tPLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	2		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	2		24		40	ns
$\overline{t_{\text {PLH }}}$	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output	3		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output	3		28		40	ns

DM74LS139 Recommended Operating Conditions Symbol $\mathrm{V}_{\mathrm{CC}}$$\quad$ Supply Voltage					
V_{IH}	HIGH Level Input Voltage	Min	Nom	Max	Units
V_{IL}	LOW Level Input Voltage	2.75	5	5.25	V
I_{OH}	HIGH Level Output Current				V
I_{OL}	LOW Level Output Current			0.8	V
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature			-0.4	mA

DM74LS139 Electrical Characteristics

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 6) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\text {I }}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{v}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{Min} \end{aligned}$	2.7	3.4		V
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I	Input Current @ Max Input Voltage	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
ILI	LOW Level Input Current	$\mathrm{V}_{\text {CC }}=\mathrm{Max}, \mathrm{V}_{1}=0.4 \mathrm{~V}$			-0.36	mA
los	Short Circuit Output Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 7)	-20		-100	mA
$\mathrm{I}_{\text {cc }}$	Supply Current	$\mathrm{V}_{\text {CC }}=$ Max (Note 8)		6.8	11	mA

Note 6: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 7: Not more than one output should be shorted at a time, and the duration should not exceed one second.
Note 8: I_{CC} is measured with all outputs enabled and OPEN.
DM74LS139 Switching Characteristics
at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) To (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\overline{\text { tpLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Select to Output		18		27	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Output		27		40	ns
${ }_{\text {tpLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Enable to Output		18		27	ns
${ }_{\text {t }}$	Propagation Delay Time HIGH-to-LOW Level Output	Enable to Output		24		40	ns

Function Table

Decimal or Function	Inputs						BI/RBO(Note 1)	Outputs							Note
	LT	RBI	D	C	B	A		a	b	c	d	e	f	g	
0	H	H	L	L	L	L	H	L	L	L	L	L	L	H	(Note 2)
1	H	X	L	L	L	H	H	H	L	L	H	H	H	H	
2	H	X	L	L	H	L	H	L	L	H	L	L	H	L	
3	H	X	L	L	H	H	H	L	L	L	L	H	H	L	
4	H	X	L	H	L	L	H	H	L	L	H	H	L	L	
5	H	X	L	H	L	H	H	L	H	L	L	H	L	L	
6	H	X	L	H	H	L	H	H	H	L	L	L	L	L	
7	H	X	L	H	H	H	H	L	L	L	H	H	H	H	
8	H	X	H	L	L	L	H	L	L	L	L	L	L	L	
9	H	X	H	L	L	H	H	L	L	L	H	H	L	L	
10	H	X	H	L	H	L	H	H	H	H	L	L	H	L	
11	H	X	H	L	H	H	H	H	H	L	L	H	H	L	
12	H	X	H	H	L	L	H	H	L	H	H	H	L	L	
13	H	X	H	H	L	H	H	L	H	H	L	H	L	L	
14	H	X	H	H	H	L	H	H	H	H	L	L	L	L	
15	H	X	H	H	H	H	H	H	H	H	H	H	H	H	
BI	X	X	X	X	X	X	L	H	H	H	H	H	H	H	(Note 3)
RBI	H	L	L	L	L	L	L	H	H	H	H	H	H	H	(Note 4)
LT	L	X	X	X	X	X	H	L	L	L	L	L	L	L	(Note 5)

Note 1: BI/RBO is a wire-AND logic serving as blanking input (BI) and/or ripple-blanking output (RBO).
Note 2: The blanking input (BI) must be OPEN or held at a HIGH logic level when output functions 0 through 15 are desired. The ripple-blanking input (RBI) must be OPEN or HIGH if blanking of a decimal zero is not desired.
Note 3: When a LOW logic level is applied directly to the blanking input (BI), all segment outputs are HIGH regardless of the level of any other input.
Note 4: When ripple-blanking input (RBI) and inputs A, B, C, and D are at a LOW level with the lamp test input HIGH, all segment outputs go H and the rip-ple-blanking output (RBO) goes to a LOW level (response condition).
Note 5: When the blanking input/ripple-blanking output (B//RBO) is OPEN or held HIGH and a LOW is applied to the lamp-test input, all segment outputs are L.

Logic Diagram

Absolute Maximum Ratings(Note 6)					
Supply Voltage		Note 6: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be			
Input Voltage		operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings.			
Operating Free Air Temperature Range $0^{\circ} \mathrm{C}$ to		The "Recommended Operating Conditions" table will define the conditions			
Storage Temperature Range			peration		
Recommended Operating Conditions					
Symbol	Parameter	Min	Nom	Max	Units
DM7446A					
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage			0.8	V
V_{OH}	HIGH Level Output Voltage (a thru g)			30	V
I_{OH}	HIGH Level Output Current (BI/RBO)			-0.2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OL }}$	LOW Level Output Current (a thru g)			40	mA
$\mathrm{I}_{\text {OL }}$	LOW Level Output Current (BI/RBO)			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$
DM7447A					
$\mathrm{V}_{\text {CC }}$	Supply Voltage	4.75	5	5.25	V
$\mathrm{V}_{\text {IH }}$	HIGH Level Input Voltage	2			V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage			0.8	V
V_{OH}	HIGH Level Output Voltage (a thru g)			15	V
$\overline{\mathrm{I}}$	HIGH Level Output Current (BI/RBO)			-0.2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OL }}$	LOW Level Output Current (a thru g)			40	mA
$\mathrm{l}_{\text {OL }}$	LOW Level Output Current (BI/RBO)			8	mA
$\mathrm{T}_{\text {A }}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

DM7447A Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Note 9: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 10: I_{CC} is measured with all outputs OPEN and all inputs at 4.5 V .

DM7447A Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	Conditions	Min	Max	Units
${ }_{\text {tPLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=120 \Omega \end{aligned}$		100	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output			100	ns

13.2mm (0.52INCH) SINGLE DIGIT NUMERIC DISPLAYS

SA52-11EWA/GWA/YWA/SRWA

SC52-11EWA/GWA/YWA/SRWA

Features

$\bullet 0.52$ INCH DIGIT HEIGHT
-LOW CURRENT OPERATION.
-EXCELLENT CHARACTER APPEARANCE.

- EASY MOUNTING ON P.C. BOARDS OR SOCKETS.
\bullet •.C. COMPATIBLE.
-CATEGORIZED FOR LUMINOUS INTENSITY, YELLOW AND GREEN CATEGORIZED FOR COLOR. -MECHANICALLYRUGGED.
- STANDARD : GRAY FACE, WHITE SEGMENT

Description

The High Efficiency Red source color devices are made with Gallium Arsenide Phosphide on Gallium Phosphide Orange Light Emitting Diode.
The Green source color devices are made with Gallium Phosphide Green Light Emitting Diode.

The Yellow source color devices are made with Gallium
Arsenide Phosphide on Gallium Phosphide Yellow Light Emitting Diode.
The Super Bright Red source color devices are made with Gallium Aluminum Arsenide Red Light Emitting Diode.

Package Dimensions \& Internal Circuit Diagram

SA52-11 SC52-11

Selection Guide

Part No.	Dice	Iv (ucd) @ 10 mA		Description
		Min.	Typ.	
SA52-11EWA	HIGH EFFICIENCY RED (GaAsP/GaP)	1900	6400	Common Anode, Rt. Hand Decimal
SC52-11EWA				Common Cathode, Rt. Hand Decimal
SA52-11GWA	GREEN (GaP)	3000	10500	Common Anode, Rt. Hand Decimal
SC52-11GWA				Common Cathode, Rt. Hand Decimal
SA52-11 MWA	YELLOW (GaAsP/GaP)	1900	4700	Common Anode, Rt. Hand Decimal
SC52-11YWA				Common Cathode, Rt. Hand Decimal
SA52-11SRWA	SUPER BRIGHT RED (GaAIAs)	8000	24000	Common Anode, Rt. Hand Decimal
SC52-11SRWA				Common Cathode, Rt. Hand Decimal

Electrical / Optical Characteristics at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Symbol	Parameter	Device	Typ.	Max.	Units	Test Conditions
λ peak	Peak Wavelength	High Efficiency Red Green Yellow Super Bright Red	$\begin{aligned} & 627 \\ & 565 \\ & 590 \\ & 660 \\ & \hline \end{aligned}$		nm	$\mathrm{IF}=20 \mathrm{~mA}$
$\lambda \mathrm{D}$	Dominate Wavelength	High Efficiency Red Green Yellow Super Bright Red	$\begin{aligned} & 625 \\ & 568 \\ & 588 \\ & 640 \end{aligned}$		nm	$\mathrm{F}=20 \mathrm{~mA}$
$\Delta \lambda 1 / 2$	Spectral Line Halfwidth	High Efficiency Red Green Yellow Super Bright Red	$\begin{aligned} & 45 \\ & 30 \\ & 35 \\ & 20 \\ & \hline \end{aligned}$		nm	$\mathrm{F}=20 \mathrm{~mA}$
C	Capacitance	High Efficiency Red Green Yellow Super Bright Red	$\begin{aligned} & 15 \\ & 15 \\ & 20 \\ & 45 \end{aligned}$		pF	$\mathrm{VF}=0 \mathrm{~V} ; \mathrm{f}=1 \mathrm{MHz}$
$V_{\text {F }}$	Forward Voltage	High Efficiency Red Green Yellow Super Bright Red	$\begin{gathered} 2.0 \\ 2.2 \\ 2.1 \\ 1.85 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 2.5 \\ & 2.5 \\ & \hline \end{aligned}$	V	$\mathrm{F}=20 \mathrm{~mA}$
I_{R}	Reverse Current	All		10	uA	$V R=5 \mathrm{~V}$

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5 ^ { \circ }} \mathrm{C}$

Parameter	High Efficiency Red	Green	Yellow	Super Bright Red	Units	
Power dissipation	105	105	105	100	mW	
DC Forward Current	30	25	30	30	mA	
Peak Forward Current [1]	160	140	140	155	mA	
Reverse Voltage	5	5	5	5	V	
Operating/Storage Temperature	$260^{\circ} \mathrm{C}$ For 5 Seconds					
Lead Solder Temperature [2]						

Notes:

1. $1 / 10$ Duty Cycle, 0.1 ms Pulse Width.
2. 4 mm below package base.

RELATIVE INTENSITY Vs. WAVELENGTH
High Efficiency Red

Absolute Maximum Ratings(Note 1)

Supply Voltage 7V
Input Voltage
Operating Free Air Temperature Range $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Storage Temperature Range $\quad-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 2) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max}, \mathrm{~V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$	2.7	3.4		V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max} \\ & \mathrm{V}_{\mathrm{IL}}=\operatorname{Max}, \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$		0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$		0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$			0.1	mA
I_{H}	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{1}=2.7 \mathrm{~V}$			20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$			-0.36	mA
IOS	Short Circuit Output Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 3)	-20		-100	mA
I_{CC}	Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$ (Note 4)		6.2	10	mA

Note 2: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second
Note 4: I_{CC} is measured with all outputs OPEN and all other inputs GROUNDED.

Switching Characteristics

at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Parameter	From (Input) to (Output)	$\mathrm{R}_{\mathrm{L}}=\mathbf{2} \mathrm{k} \Omega$				Units
			$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		
			Min	Max	Min	Max	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Data to Y		15		20	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Data to Y		26		35	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Select to Y		29		35	ns
${ }_{\text {tPHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Select to Y		38		45	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay Time LOW-to-HIGH Level Output	Strobe to Y		24		30	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay Time HIGH-to-LOW Level Output	Strobe to Y		32		40	ns

Ordering Code:

| Order Number | Package Number | Package Description |
| :--- | :---: | :---: | :---: |
| DM74LS181N | N24A | 24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-010, 0.600 Wide |

Logic Symbols

$\mathrm{V}_{\mathrm{CC}}=\operatorname{Pin} 24$
GND $=\operatorname{Pin} 12$

Connection Diagram

Pin Descriptions

Pin Names	Description
$\bar{A} 0-\bar{A} 3$	Operand Inputs (Active LOW)
$\bar{B} 0-\bar{B} 3$	Operand Inputs (Active LOW)
S0-S3	Function Select Inputs
M	Mode Control Input
C_{n}	Carry Input
$\bar{F} 0-\bar{F} 3$	Function Outputs (Active LOW)
$A=B$	Comparator Output
\bar{G}	Carry Generate Output (Active LOW)
\bar{P}	Carry Propagate Output (Active LOW)
C_{n+4}	Carry Output

Functional Description

The DM74LS181 is a 4-bit high speed parallel Arithmetic Logic Unit (ALU). Controlled by the four Function Select inputs (S0-S3) and the Mode Control input (M), it can perform all the 16 possible logic operations or 16 different arithmetic operations on active HIGH or active LOW operands. The Function Table lists these operations
When the Mode Control input (M) is HIGH, all internal carries are inhibited and the device performs logic operations on the individual bits as listed. When the Mode Control input is LOW, the carries are enabled and the device performs arithmetic operations on the two 4 -bit words. The device incorporates full internal carry lookahead and provides for either ripple carry between devices using the $\mathrm{C}_{\mathrm{n}+4}$ output, or for carry lookahead between packages using the signals $\overline{\mathrm{P}}$ (Carry Propagate) and $\overline{\mathrm{G}}$ (Carry Generate). In the ADD mode, P indicates that F is 15 or more, while G indicates that $\overline{\bar{F}}$ is 16 or more. In the SUBTRACT mode, $\overline{\mathrm{P}}$ indicates that \bar{F} is zero or less, while \bar{G} indicates that \bar{F} is less than zero. \bar{P} and G are not affected by carry in. When speed requirements are not stringent, it can be used in a simple ripple carry mode by connecting the Carry output $\left(\mathrm{C}_{\mathrm{n}+4}\right)$ signal to the Carry input $\left(\mathrm{C}_{\mathrm{n}}\right)$ of the next unit. For high speed operation the device is used in conjunction with the 9342 or 93S42 carry lookahead circuit. One carry lookahead package is required for each group of four

DM74LS181 devices. Carry lookahead can be provided at various levels and offers high speed capability over extremely long word lengths.
The A = B output from the device goes HIGH when all four \bar{F} outputs are HIGH and can be used to indicate logic equivalence over four bits when the unit is in the subtract mode. The $\mathrm{A}=\mathrm{B}$ output is open-collector and can be wiredAND with other $\mathrm{A}=\mathrm{B}$ outputs to give a comparison for more than four bits. The $A=B$ signal can also be used with the $\mathrm{C}_{\mathrm{n}+4}$ signal to indicate $\mathrm{A}>\mathrm{B}$ and $\mathrm{A}<\mathrm{B}$.
The Function Table lists the arithmetic operations that are performed without a carry in. An incoming carry adds a one to each operation. Thus, select code LHHL generates A minus B minus 1 (2s complement notation) without a carry in and generates A minus B when a carry is applied. Because subtraction is actually performed by complementary addition (1s complement), a carry out means borrow thus a carry is generated when there is no underflow and no carry is generated when there is underflow. As indicated, this device can be used with either active LOW inputs producing active LOW outputs or with active HIGH inputs producing active HIGH outputs. For either case the table lists the operations that are performed to the operands labeled inside the logic symbol.

Function Table

Mode Select Inputs				Active LOW Operands \& F_{n} Outputs		Active HIGH Operands \& F_{n} Outputs	
S3	S2	S1	S0	Logic $(M=H)$	Arithmetic (Note 2) $(M=L)\left(C_{n}=L\right)$	$\begin{aligned} & \text { Logic } \\ & (M=H) \end{aligned}$	Arithmetic (Note 2) $(M=L)\left(C_{n}=H\right)$
L	L	L	L	$\overline{\mathrm{A}}$	A minus 1	$\overline{\mathrm{A}}$	A
L	L	L	H	$\overline{\mathrm{AB}}$	$A B$ minus 1	$\overline{\mathrm{A}}+\overline{\mathrm{B}}$	$A+B$
L	L	H	L	$\overline{\mathrm{A}}+\overline{\mathrm{B}}$	$A \bar{B}$ minus 1	$\bar{A} B$	$A+\bar{B}$
L	L	H	H	Logic 1	minus 1	Logic 0	minus 1
L	H	L	L	$\overline{\mathrm{A}}+\overline{\mathrm{B}}$	A plus ($\mathrm{A}+\overline{\mathrm{B}}$)	$\overline{\mathrm{AB}}$	A plus $A \bar{B}$
L	H	L	H	$\overline{\mathrm{B}}$	$A B$ plus $(A+\bar{B})$	$\overline{\mathrm{B}}$	$(A+B)$ plus $A \bar{B}$
L	H	H	L	$\overline{\mathrm{A}} \oplus \overline{\mathrm{B}}$	A minus B minus 1	$A \oplus B$	A minus B minus 1
L	H	H	H	$A+\bar{B}$	$\mathrm{A}+\overline{\mathrm{B}}$	$A \bar{B}$	$A B$ minus 1
H	L	L	L	$\bar{A} B$	A plus ($\mathrm{A}+\mathrm{B}$)	$\overline{\mathrm{A}}+\mathrm{B}$	A plus $A B$
H	L	L	H	$A \oplus B$	A plus B	$\overline{\mathrm{A}} \oplus \overline{\mathrm{B}}$	A plus B
H	L	H	L	B	$A \bar{B}$ plus $(A+B)$	B	$(\mathrm{A}+\overline{\mathrm{B}})$ plus AB
H	L	H	H	A + B	$A+B$	AB	$A B$ minus 1
H	H	L	L	Logic 0	A plus A (Note 1)	Logic 1	A plus A (Note 1)
H	H	L	H	$A \bar{B}$	$A B$ plus A	A $+\bar{B}$	$(A+B)$ plus A
H	H	H	L	$A B$	$A \bar{B}$ minus A	$A+B$	$(\mathrm{A}+\overline{\mathrm{B}})$ plus A
H	H	H	H	A	A	A	A minus 1

Note 1: Each bit is shifted to the next most significant position.
Note 2: Arithmetic operations expressed in 2s complement notation

Logic Diagram

Absolute Maximum Ratings(Note 3)

Supply Voltage	7 V
Input Voltage	7 V
Operating Free Air Temperature Range	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Note 3: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrica Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V_{CC}	Supply Voltage	4.75	5	5.25	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH Level Input Voltage	2			V
$\mathrm{~V}_{\mathrm{IL}}$	LOW Level Input Voltage			0.8	V
I_{OH}	HIGH Level Output Current			-0.4	mA
I_{OL}	LOW Level Output Current			8	mA
$\mathrm{~T}_{\mathrm{A}}$	Free Air Operating Temperature	0		70	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

Symbol	Parameter	Conditions		Min	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	Max	Units
V_{1}	Input Clamp Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$				-1.5	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Min}, \mathrm{I}_{\mathrm{OH}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IL}}=\mathrm{Max} \end{aligned}$		2.7			V
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=\operatorname{Max}, \\ & \mathrm{V}_{\mathrm{IH}}=\operatorname{Min} \end{aligned}$			0.35	0.5	V
		$\mathrm{l}_{\mathrm{OL}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}$			0.25	0.4	
I_{1}	Input Current @ Max Input Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=7 \mathrm{~V}$	$\begin{aligned} & \mathrm{M} \text { input } \\ & \bar{A}_{n}, \bar{B}_{n} \\ & \mathrm{~S}_{\mathrm{n}} \\ & \mathrm{C}_{\mathrm{n}} \end{aligned}$			$\begin{aligned} & \hline 0.1 \\ & 0.3 \\ & 0.4 \\ & 0.5 \end{aligned}$	mA
IIH	HIGH Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$	$\begin{aligned} & \text { M input } \\ & \bar{A}_{n}, \bar{B}_{n} \\ & S_{n} \\ & C_{n} \end{aligned}$			$\begin{gathered} \hline 20 \\ 60 \\ 80 \\ 100 \end{gathered}$	$\mu \mathrm{A}$
$I_{\text {IL }}$	LOW Level Input Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$	$\begin{aligned} & \mathrm{M} \text { input } \\ & \bar{A}_{\mathrm{n}}, \overline{\mathrm{~B}}_{\mathrm{n}} \\ & \mathrm{~S}_{\mathrm{n}} \\ & \mathrm{C}_{\mathrm{n}} \end{aligned}$			$\begin{array}{r} \hline-0.4 \\ -1.2 \\ -1.6 \\ -2.0 \end{array}$	mA
loS	Short Circuit Output Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\operatorname{Max} \\ & (\text { Note 5) } \end{aligned}$		-20		-100	mA
I_{Cc}	Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{~B}}_{\mathrm{n}}, \mathrm{C}_{\mathrm{n}}=\mathrm{GND} \\ & \mathrm{~S}_{\mathrm{n}}, \mathrm{M}, \overline{\mathrm{~A}}_{\mathrm{n}}=4.5 \mathrm{~V} \end{aligned}$				37	mA

Note 4: All typicals are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Note 5: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Physical Dimensions inches (millimeters) unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
