Cuestiones

- C1. (1 pto.) Descomponer en factores irreducibles sobre \mathbb{Q} el polinomio $f(x) = x^6 + x^5 2x^4 + 2x^2 + 2x 4$.
- C2. (1 pto.) Hallar un subespacio f-invariante no trivial siendo $f: \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación cuya matriz asociada en la base canónica es $A = \begin{pmatrix} 4 & -2 & 2 \\ 2 & 0 & 2 \\ -1 & 1 & 1 \end{pmatrix}$.
- C3. (1.5 pto.) Determinar la matriz asociada respecto de la base canónica de la forma bilineal $f: R^3 \to \mathbb{R}^3$ sabiendo que

$$f((2,0,0),(2,0,0)) = 0$$
 $f((2,0,0),(0,2,1)) = -4$ $f((2,0,0),(1,1,1)) = -1$

$$f((0,2,1),(0,2,1)) = 1$$
 $f((0,2,1)),(1,1,1)) = f((1,1,1)),(1,1,1)) = -1$

y calcular su signatura.

Problemas

P1. (2.5 ptos.) Se considera el endomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ cuya matriz asociada en la base canónica es:

$$A = \begin{pmatrix} -1 & 0 & 2 & 0 \\ -1 & -1 & 1 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (i) Hallar su forma canónica de Jordan J
- (ii) ¿Son las matrices $B = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ y $C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ asociadas a f? Razona tu
- P2. (2.5 ptos.) Se considera el espacio \mathbb{R}^3 en el que se ha definido un producto escalar (,) de forma que la base $\mathfrak{B} = \{(1,0,0),(1,1,0),(1,1,1)\}$ es ortonormal respecto de (,). Se define en \mathbb{R}^3 el endomorfismo f((a,b,c)) = (7a-8b+6c,3a-7b+9c,5c).
 - (i) Estudiar si f es una isometría y/o endomorfismo autoadjunto de (\mathbb{R}^3 , (,)).
 - (ii) Hallar, si es posible, una base ortonormal respecto de (,) de \mathbb{R}^3 que esté formada por vectores propios de f.
 - (iii) ¿Existe una base de \mathbb{R}^3 respecto de la cual la matriz asociada a f sea $\begin{pmatrix} -5 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 0 & 5 \end{pmatrix}$? ¿Por qué?

Teoría

T1. (1.5 ptos.) Vectores y valores propios de un endomorfismo.