Problemas propuestos del Tema 1: Nociones básicas del Álgebra Lineal.

1.- Encontrar una base y la dimensión del subespacio vectorial

$$S = \langle (1, -2, -1, -3), (2, -1, 0, 2), (0, -1, 2, -1), (3, -4, 1, -2) \rangle$$

- 2.- Sea $C = \{(0,3,1), (-2,1,0), (1,1,-1), (1,1,1)\}$. Probar que C es un sistema generador de \mathbb{R}^3 y localizar un subconjunto de C que sea base de \mathbb{R}^3 .
- 3.- Sea V un \mathbb{Q} -espacio vectorial de dimensión 4 con base $\mathfrak{B} = \{u_1, u_2, u_3, u_4\}$. Se definen los vectores

$$v_1 = 2u_1 - u_2 + 2u_3 \qquad v_2 = 2u_1 - u_3 + 2u_4$$

$$v_3 = 2u_1 + u_2 - u_3 \qquad v_4 = -u_1 - 2u_3 + 3u_4$$

Probar que $\mathfrak{B}' = \{v_1, v_2, v_3, v_4\}$ es una base de V y calcular lamatriz de cambio de coordenadas entre ambas bases.

- 4.- Sea $U = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 | x_1 = -x_2, x_4 = 0\}$ subespacio vectorial de \mathbb{R}^4 . Hallar una base de U y localizar las coordenadas respecto a ella de $(x_1, x_2, x_3, x_4) \in U$.
- 5.- Se considera $f: \mathbb{R}^2 \to \mathbb{R}^3$ aplicación lineal tal que f((-1,-1)) = (1,-1,1) y f((-3,1)) = (1,-2,1). Determinar, si es posible, f((x,y)) donde $(x,y) \in \mathbb{R}^2$.
- 6.- Hallar la matriz asociada a la aplicación lineal $f:V\to V$ respecto de $\mathfrak{B}_V=\{v_1,v_2,v_3\}$ y sabiendo que

$$f(v_1 + 2v_2 - 3v_3) = v_1 - v_3 - v_2$$
 $f(2v_1 + v_3) = 2v_2 - v_3$ $f(3v_1 + v_2) = v_2 + 2v_3$.

- 7.- Sean V y W dos espacios vectoriales ambos con dimensión finita n y $f:V\to W$ lineal. Demostrar que si f es suprayectiva, entonces f es biyectiva.
- 8.- Sea W = <(0,1,0,0), (3,1,0,0)>, y $f:W\to W$ la aplicación lineal definida por f(x,y,z,t)=(x,-x-2y,-z-t,2t).
 - (i) Demostrar que está bien definida.

Proyecto OCW de la UPV/EHU. M.A.García y T. Ramírez

- (ii) Calcular la matriz B asociada a f respecto de $\mathfrak{B}_W = \{(3,0,0,0), (6,3,0,0)\}$ base de W.
- 9.- Se definen las aplicaciones lineales

$$f: \mathbb{R}^4 \to \mathbb{R}^2$$

 $(x, y, z, t) \mapsto (y + 3t, y + t)$

у

$$g: \mathbb{R}^2 \to \mathbb{R}^4$$

 $(x,y) \mapsto (x+y,y+2x,-y,0)$.

Sean $\mathfrak{B}_{\mathbb{R}^4} = \{(1,1,0,0),(0,1,1,0),(0,0,1,1),(0,0,1,0)\}$ y $\mathfrak{B}_{\mathbb{R}^2} = \{(1,-1),(1,1)\},$ bases de \mathbb{R}^4 y \mathbb{R}^2 , respectivamente. Calcular $M_{\mathfrak{B}_{\mathbb{R}^4}\mathfrak{B}_{\mathbb{R}^4}}(g \circ f)$. ¿Existe alguna relación entre esta matriz y $M_{\mathfrak{B}_{\mathbb{R}^4}\mathfrak{B}_{\mathbb{R}^2}}(f)$ y $M_{\mathfrak{B}_{\mathbb{R}^2}\mathfrak{B}_{\mathbb{R}^4}}(g)$?

- 10.- Calcular los valores propios reales λ y los subespacios fundamentales $V(\lambda)$ para $f \in$ End (\mathbb{R}^3) definido por f(x, y, z) = (-x z, -7x + 4y + 13z, x 3z).
- 11.- Calcular los valores propios reales y los vectores propios de la matriz

$$A = \begin{pmatrix} 1 & 0 & -4 & 4 \\ 4 & 3 & -4 & 8 \\ -4 & -2 & 5 & -8 \\ -4 & -2 & 6 & -9 \end{pmatrix}.$$

12.- Sea $A \in Mat_{n \times n}(K)$. Probar que $A \in GL_n(K)$ si y sólo si el cero no es valor propio de A.

Problemas

- 1.- Sea $G = \{(x,y,z) \in \mathbb{R}^3 | y+z=0 \}$ y $H = \{(x,y,z) \in \mathbb{R}^3 | x=0, y-z=0 \}$. Demostrar que G y H son subespacios vectoriales de \mathbb{R}^3 (tomando en \mathbb{R}^3 la suma y la multiplicación por un escalar estandar) y que $\mathbb{R}^3 = G \oplus H$.
- 2.- Se consideran los subespacios vectoriales $U=\{(x,y,z,t)\in\mathbb{R}^4|x+y-t=0,x+2z+t=0\},\ W=\{(x,y,z,t)\in\mathbb{R}^4|x-2y+6z+5t=0,x+t=0\}$
 - (i) Determinar $U + W y U \cap W$.
 - (ii) Localizar $T \subseteq \mathbb{R}^4$ tal que $\mathbb{R}^4 = T \oplus (U \cap W)$.

Proyecto OCW de la UPV/EHU. M.A.García y T. Ramírez

- 3.- Se considera la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $f((1,0,0)) = (0,-1, \sin\alpha)$, $f((0,1,0)) = (1,0,\cos\alpha)$ y $f((0,0,1)) = (\sin\alpha,\cos\alpha,0)$.
 - (i) Calcular la matriz asociada a f tomando como base la base canónica de \mathbb{R}^3 .
 - (ii) Sin realizar la composición, demostrar que $f^3((x,y,z))=(0,0,0)$, para todo (x,y,z) elemento de \mathbb{R}^3 .
 - (iii) Localizar bases de \mathbb{R}^3 , $\mathfrak{B}_{\mathbb{R}^3}$ y $\mathfrak{B}'_{\mathbb{R}^3}$, para que la matriz asociada a f sea de la forma $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.
 - (iv) Localizar matrices de paso P y Q tales que A = PBQ, siendo A la matriz asociada a f calculada en (i) y B la matriz asociada a f calculada en (ii).
- 4.- Sea la aplicación lineal $f: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$f((-1,1,3)) = (6,-4,16), f((-2,1,1)) = (-2,-5,1), f((3,2,-1)) = (1,14,-12).$$

- (i) Calcular la matriz asociada a f respecto de la base canónica de \mathbb{R}^3 .
- (ii) Sin probar la invectividad y/o suprayectividad de f directamente, ¿podemos deducir si f es un automorfismo?
- 5.- Sea V un \mathbb{R} -espacio vectorial y $f \in \text{End } V$ tal que $f^2 = 1_V$. Probar que los únicos valores propios posibles de f son 1 y -1.