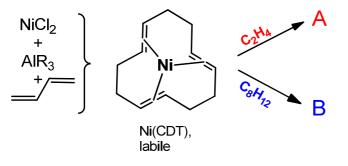
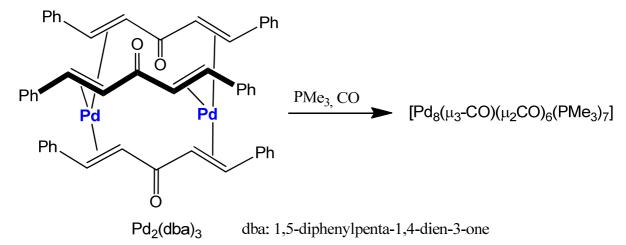

T4. OMCh Problems

1 Give structural formulas and electron count for A and B:

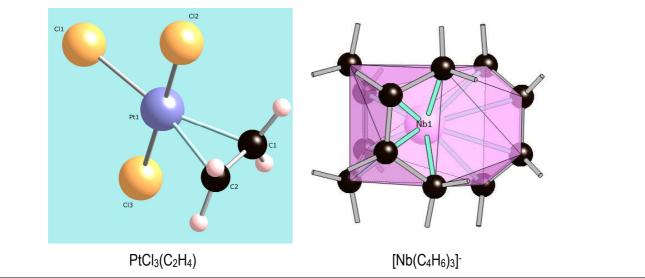


- a) Explain the configuration of olefin ligand in compound A
- b) ¹⁹F NMR for compound B gives two signals between 20 and -50 °C. However, ¹H NMR spectrum shows a single signal at 20°C and two signals at -44°C. Explain these facts.

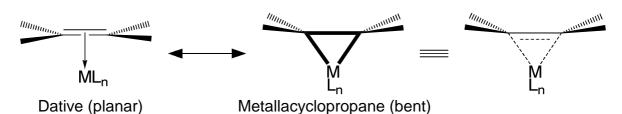
Ligand	Bond distance C-C (Å)	Bond distance Rh-C (Å)	
C ₂ H ₄	1.358	2.169	
C_2F_4	1.405	2.026	


VOE & OP, 2010

2 Cyclododecatriene (CDT) forms labile complex with Ni(0), which serves as a starting material for other Ni(0) olefin complexes. Determine electron count and structural formulas for A and B. Indicate the coordination of central atom.



- 3 For butadiene
 - a. Draw the frontier orbitals (HOMO-1 to LUMO+1)
 - b. Sketch its coordination modes to metal centers.


4 $Pd_2(dba)_3$ is a ready source of palladium(0). Draw the molecular structure of the reaction product. Indicate the coordination polyhedron of each palladium center:

5 Describe the synthesis of the following compounds:

6 Resonance forms for olefin coordination:

According to the geometrical date, indicate which compounds of the following table are genuine olefin complexes and which ones are rather metallacyclopropanes:

Complex		C=C	M-C	Angle
$[Pt (C_2H_4)_2(C_2F_4)]$	ETFEPT11	136.5 137.9 143.4	219-227 219-225 202-204	14-17 15-16 34-36
$[Au(C_2H_4)_3]^+$	KISVOY	135-137	226-227	36
$[Cu(C_2H_4)_3]^+$	NITYUL	129-132	212-218	2-36
$[\mathbf{Rh}Cp(C_2H_4)(C_2F_4)]$	CPEFRH	135.8 140.5	216-217 202-203	20-22 37
$[\textbf{Co}\text{Cp}(\text{PMe}_3)(\text{C}_2\text{H}_4)]$	MOHWUC	142.0	198	23-26
$[\mathbf{Rh}Cp(PMe_3)(C_2H_4)]$	COHBAC	144.5	208-209	11-28
$[\mathbf{Rh}Cp(PPh_3)(C_2H_4)]$	XEPJIM	140-141	209-211	35
$[\mathbf{V}Cp(PMe_3)_2(C_2H_4)]$	GEXNAY10	136.5	215-217	21-25
$[\textbf{Cr}Cp(PMe_3)_2(C_2H_4)]$	NABXIX	141.5	213	29-32

7 Predict the products of the following reactions:

 $WCl_{6} + C_{2}Cl_{2}.OEt_{2} + Cl_{2}C = CCl_{2} \xrightarrow{1. -C_{2}Cl_{6}} PPh_{4}Cl$ $[RuCp(CH_{3}CN)_{3}]^{+} + R = R \xrightarrow{} R$ $[TiCp_{2}(CO)_{2} + Ph - C = C - Ph \xrightarrow{}$

Additional problems

Butler, Harrod, Inorganic Chemistry. Principles and applications, Benjamin Cummings, Redwood City, 1989. 22.17.