Rebreathing Diffusion

Introduction.

Since 1999 we sell our re-breathing diffusion option.

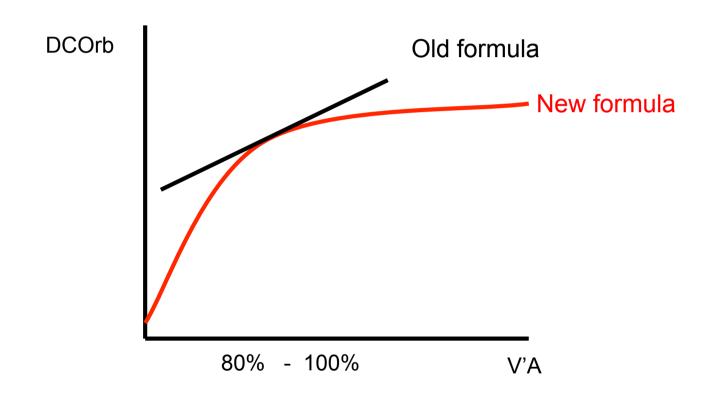
The reproducibility and interpretation has always been a point of discussion.

The predicted values where always to high, and differently corrected than published in the literature.

Since the predicted DLCO rb is not a predicted as normally calculated but the predicted value depends on the measured Alv. Ventilation and Alv Volume.

This document describes the introduction of a new parameter that will be the new normalized estimated DLCO rb value.

After a discussion with the author, H. STam, he created a new exponential formula for the KCO from his study, this formula now, is Implemented, since JLAB 5.10.


Needed Parameters

Parameter text editor number

+			
	Pred	Best	%(B/P)
FRC-He [L]	3.63	4.01	110.5
ERV [L]	1.57	1.83	116.2
RV-He [L]	2.06	2.18	106.1
VC max [L]	5.69	5.73	100.7
TLC-He [L]	7.86	7.91	100.6
DLCO rb [mmol/min/kPa]		5.54	
DLCOrb/VA mol/min/kPa/l]		1.29	
VA rb old [I]	3.72	4.26	114.7
Alveol. ventil.o [I/min]	8.43	7.94	94.1
KCOrbc No mol/min/kPa/l]		1.07	
KCOrb/KCOcN [%]		120.5	
Quality [%]		91.96	

Quality > 90%

Rebreathing Diffusion

New parameter

KCOrbN = KCO calculated according to the following formula.


KCOrbN =

((44,584949202 + (-30,79427195*exp(-0,084992119*{V'A measured})) -1,825664937 * {VArb measured} - 0,087302371*{Age})) / 16,66667

KCOrbN in mmol/min/kPa

KCOrbN% = DLCO/VAc measured / KCOrbN

Rebreathing Diffusion

Formulas 1

TLCOrb = 60 *
$$\tau co$$
 * $\frac{\left\{FRC_{STPD} + (V_D + V_{fill})_{STPD}\right\}}{P_{amb} - 6.25hPa} * \frac{1000}{22.4l/mol}$

with: $\tau_{\infty} = \text{time constant in [1/sec]}$

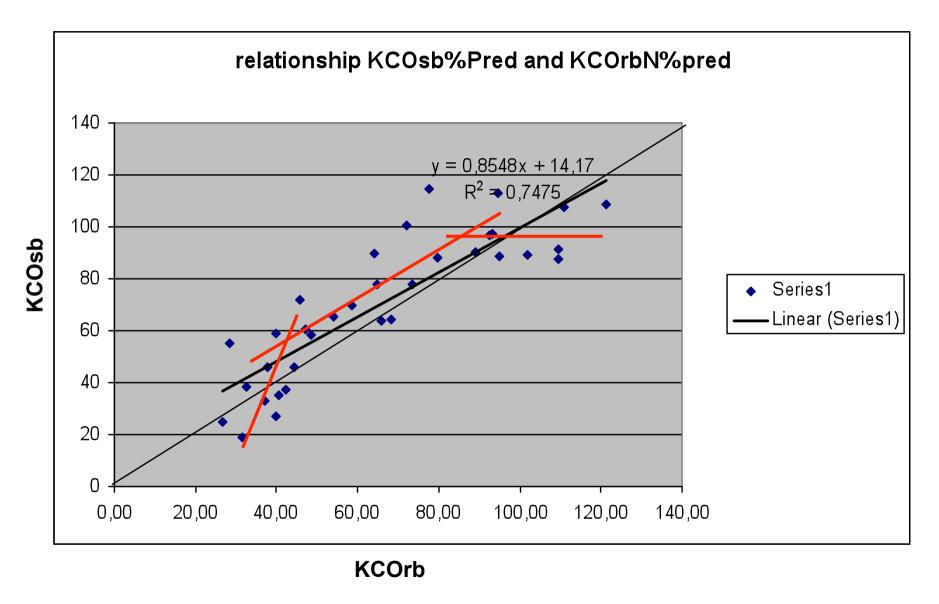
Pamb = ambient pressure in kPa

FRC_{STPD} = FRC at 0°C, 101.3 kPa, dry

V_D = apparatus dead space, which is added to the filling volume

V_{fill} = filling or starting volume of the rebreathing system

The unit of the so calculated TLCOrb is: $\left[\frac{mmol}{kPa \cdot min}\right]$


KCOrb

The Krogh-Factor KCO is calculated by:

$$KCO = \frac{TLCO_{rb}}{VA_{rb}}$$

Formulas 2

Parameter number	Parameter name	Formula
• 5	VA	FRC Helium - Vdsystem
• 6	V'A Alveolar ventilation	(Vt * Bf) – (Bf * Vdsys)
• 22	DLCO	See previous Slide
• 23	DLCO/VAc	parameter 22 / par.5
• 35	KCOcN	
• 36	KCOrbc%N	Par 23 / par 35

Note: Below 50% and above 110% KCOsb is limited