Integer Programming. Solutions

- 1. The optimal solutions to the IP problems, using the graphical solution:
 - 1.1 $x_1^* = 5$, $x_2^* = 2$, $z^* = 13$. 1.2 $x_1^* = 14$, $x_2^* = 2$, $z^* = 100$.
- 2. The optimal solutions to the IP problems:
 - 2.1 $x_1^* = 5$, $x_2^* = 2$, $z^* = 13$. 2.2 $x_1^* = 14$, $x_2^* = 2$, $z^* = 100$. 2.3 $x_1^* = 0$, $x_2^* = 0$, $x_3^* = 5$, $z^* = 15$. 2.4 There are multiple optimal solutions: $x_1^* = 3$, $x_2^* = 0$, $x_3^* = 9$, $z^* = 12$. $x_1^* = 4$, $x_2^* = 2$, $x_3^* = 6$, $z^* = 12$.
- 3. The optimal solutions to the 0-1 IP problems:
 - 3.1 There are multiple optimal solutions: $x_1^* = 1, x_2^* = 0, x_3^* = 1, x_4^* = 0, x_5^* = 1, z^* = 17.$ $x_1^* = 1, x_2^* = 1, x_3^* = 0, x_4^* = 1, x_5^* = 1, z^* = 17.$ 3.2 $x_1^* = 1, x_2^* = 0, x_3^* = 0, x_4^* = 1, x_5^* = 1, z^* = 15.$ 3.3 $x_1^* = 1, x_2^* = 1, x_3^* = 1, x_4^* = 0, x_5^* = 0, z^* = 19.$ 3.4 $x_1^* = 0, x_2^* = 1, x_3^* = 0, x_4^* = 0, x_5^* = 1, x_6^* = 1, z^* = 17.$ 3.5 $x_1^* = 0, x_2^* = 1, x_3^* = 1, x_4^* = 1, z^* = 1.$
- 4. Components C_4 , C_5 and C_6 are selected to be carried in the box. $x_1^* = 0, \ x_2^* = 0, \ x_3^* = 0, \ x_4^* = 1, \ x_5^* = 1, \ x_6^* = 1, \ z^* = 16.$