Integer Programming. Solutions

1. The optimal solutions to the IP problems, using the graphical solution:
$1.1 x_{1}^{*}=5, \quad x_{2}^{*}=2, \quad z^{*}=13$.
$1.2 x_{1}^{*}=14, \quad x_{2}^{*}=2, \quad z^{*}=100$.
2. The optimal solutions to the IP problems:
$2.1 x_{1}^{*}=5, \quad x_{2}^{*}=2, \quad z^{*}=13$.
$2.2 x_{1}^{*}=14, \quad x_{2}^{*}=2, \quad z^{*}=100$.
$2.3 x_{1}^{*}=0, \quad x_{2}^{*}=0, \quad x_{3}^{*}=5, \quad z^{*}=15$.
2.4 There are multiple optimal solutions:

$$
\begin{array}{llll}
x_{1}^{*}=3, & x_{2}^{*}=0, & x_{3}^{*}=9, & z^{*}=12 . \\
x_{1}^{*}=4, & x_{2}^{*}=2, & x_{3}^{*}=6, & z^{*}=12 .
\end{array}
$$

3. The optimal solutions to the 0-1 IP problems:
3.1 There are multiple optimal solutions:

$$
\begin{aligned}
& x_{1}^{*}=1, x_{2}^{*}=0, x_{3}^{*}=1, x_{4}^{*}=0, x_{5}^{*}=1, \quad z^{*}=17 . \\
& x_{1}^{*}=1, x_{2}^{*}=1, x_{3}^{*}=0, x_{4}^{*}=1, x_{5}^{*}=1, \quad z^{*}=17 . \\
& 3.2 x_{1}^{*}=1, x_{2}^{*}=0, x_{3}^{*}=0, x_{4}^{*}=1, x_{5}^{*}=1, \quad z^{*}=15 . \\
& 3.3 x_{1}^{*}=1, x_{2}^{*}=1, x_{3}^{*}=1, x_{4}^{*}=0, x_{5}^{*}=0, \quad z^{*}=19 \text {. } \\
& 3.4 x_{1}^{*}=0, x_{2}^{*}=1, x_{3}^{*}=0, x_{4}^{*}=0, x_{5}^{*}=1, x_{6}^{*}=1, \quad z^{*}=17 \text {. } \\
& 3.5 x_{1}^{*}=0, x_{2}^{*}=1, x_{3}^{*}=1, x_{4}^{*}=1, \quad z^{*}=1 .
\end{aligned}
$$

4. Components C_{4}, C_{5} and C_{6} are selected to be carried in the box.

$$
x_{1}^{*}=0, x_{2}^{*}=0, x_{3}^{*}=0, x_{4}^{*}=1, x_{5}^{*}=1, x_{6}^{*}=1, \quad z^{*}=16 .
$$

