The transportation problem and the assignment problem. Solutions

1. The matrix format of the transportation problem where the objective is to minimize the company's transportation cost:

	C_1	C_2	C_3	Supply
P_1	100	100	50	15
P_2	650	110	100	15
P_3	60	65	75	15
P_4	150	90	70	15
Demand	30	16	14	

2. The matrix format of the transportation problem where the objective is to maximize:

	S_1	S_2	S_3	Supply
P_1	26	13	22	100
P_2	30	21	27	85
P_3	34	22	30	140
P_4	25	18	24	125
Demand	125	150	175	

3. The matrix format of the transportation problem where the objective is to maximize the total benefit:

	C_1	C_2	C_3	C_4	Supply
P_1	60	40	45	55	130
P_2	70	55	65	60	200
P_3	80	60	55	75	170
P_4	-M	-M	0	0	50
Demand	150	175	175	50	

	1st week	2nd week	3rd week	Supply
Stored in the warehouse	0	15	30	2
1st week, regular-time shift	20	35	50	5
1st week, extended shift	30	45	60	5
2nd week, regular-time shift	M	30	45	4
2nd week, extended shift	M	40	55	5
3rd week, regular-time shift	M	M	45	2
3rd week, extended shift	M	M	55	5
Demand	8	8	8	

4. The matrix format of the transportation problem where the objective is to minimize:

- 5. The initial basic feasible solutions.
 - 5.1 Applying the northwest corner method: $x_{11} = 300, x_{12} = 100, x_{22} = 200, x_{32} = 40, x_{33} = 400, x_{34} = 180, z = 14280.$ Applying Vogel's approximation method: $x_{14} = 400, x_{21} = 200, x_{31} = 100, x_{32} = 340, x_{33} = 140, x_{34} = 40, z = 11420.$
 - 5.2 Applying the northwest corner method, the solution is degenerate: $x_{11} = 10, x_{12} = 10, x_{13} = 10, x_{23} = 10, x_{24} = 20, x_{35} = 30, z = 3680.$ Applying Vogel's approximation method: $x_{14} = 10, x_{15} = 20, x_{21} = 10, x_{22} = 10, x_{25} = 10, x_{33} = 20, x_{34} = 10, z = 2600.$
 - 5.3 Applying the northwest corner method: $x_{11} = 80, x_{21} = 20, x_{22} = 80, x_{32} = 20, x_{33} = 50, x_{34} = 5, x_{44} = 45, x_{45} = 75, x_{55} = 25, x_{56} = 35, x_{66} = 65, z = 10585.$ Applying Vogel's approximation method, the solution is degenerate:

 $x_{13} = 50, x_{16} = 30, x_{21} = 100, x_{35} = 75, x_{42} = 40, x_{45} = 10, x_{46} = 70, x_{52} = 60, x_{64} = 50, x_{65} = 15, z = 7300.$

- 6. The optimal solutions and the minimum transportation costs:
 - 6.1 $x_{11}^* = 32, x_{21}^* = 20, x_{22}^* = 3, x_{32}^* = 30, x_{41}^* = 18, x_{43}^* = 22, x_{44}^* = 7, z^* = 1931.$
 - 6.2 $x_{11}^* = 20, x_{14}^* = 10, x_{23}^* = 10, x_{24}^* = 2, x_{32}^* = 4, x_{34}^* = 1, x_{44}^* = 10, z^* = 782.$
 - 6.3 Multiple optimal solutions, $z^* = 174$. $x_{11}^* = 3, x_{13}^* = 7, x_{24}^* = 3, x_{25}^* = 9, x_{31}^* = 1, x_{32}^* = 5, x_{34}^* = 6$. $x_{12}^* = 3, x_{13}^* = 7, x_{24}^* = 3, x_{25}^* = 9, x_{31}^* = 4, x_{32}^* = 2, x_{34}^* = 6$.
 - $x_{11}^* = 4, x_{13}^* = 6, x_{23}^* = 1, x_{24}^* = 2, x_{25}^* = 9, x_{32}^* = 5, x_{34}^* = 7.$

6.4 Multiple optimal solutions, $z^* = 199$.

 $x_{15}^* = 4, x_{23}^* = 6, x_{31}^* = 3, x_{32}^* = 4, x_{33}^* = 1, x_{34}^* = 1.$ $x_{13}^* = 1, x_{15}^* = 3, x_{23}^* = 6, x_{31}^* = 3, x_{32}^* = 4, x_{34}^* = 2.$

- 6.5 The optimal solution is degenerate, $z^* = 3784$. $x_{14}^* = 42, x_{22}^* = 40, x_{31}^* = 18, x_{32}^* = 10, x_{33}^* = 8, x_{35}^* = 12, x_{44}^* = 10.$
- 6.6 The optimal solution is degenerate, $z^* = 363$. $x_{12}^* = 10, x_{13}^* = 5, x_{22}^* = 5, x_{31}^* = 9, x_{34}^* = 3, x_{44}^* = 2, x_{51}^* = 6$.
- 7. The optimal assignment: $A_1 \rightarrow D$, $A_2 \rightarrow C$, $A_3 \rightarrow A$, $A_4 \rightarrow B$. Applicant A_5 remains unemployed. $z^* = 25$.
- 8. Multiple optimal assignments, $z^* = 30$.

 $T_1 \rightarrow P_2, T_2 \rightarrow P_4, T_3 \rightarrow P_1, T_4 \rightarrow P_3$. The production plant P_5 does not receive any truck.

 $T_1 \rightarrow P_2, T_2 \rightarrow P_4, T_3 \rightarrow P_3, T_4 \rightarrow P_5$. The production plant P_1 does not receive any truck.

9. The optimal assignments and z^* :

9.1 $O_1 \to D_4, O_2 \to D_2, O_3 \to D_1, O_4 \to D_3, z^* = 27.$ 9.2 $O_1 \to D_2, O_2 \to D_4, O_3 \to D_5, O_4 \to D_1, O_5 \to D_3, z^* = 29.$ 9.3 $O_1 \to D_1, O_2 \to D_2, O_3 \to D_5, O_4 \to D_4, O_5 \to D_3, z^* = 55.$