
Chapter 1

Linear Modeling and Graphical
Solution

Linear programming is an important branch of Operations Research. This math-
ematical technique consists of a set of methods used to obtain the best solution
to linear optimization problems subject to constraints, such as practical contexts
when the optimal distribution of limited resources must be found. There is a wide
variety of problems which can be represented by a linear programming model.
Some examples are the problem of assigning resources to tasks, production plan-
ning, transportation of goods, product-mix problems, etc.

In linear programming, a mathematical model is used to describe the problem.
The adjective linear means that all functions used to define the model are linear.

1.1 The linear model

A linear model deals with optimizing (maximizing or minimizing) a linear func-
tion with several variables, given certain linear constraint inequalities.

opt z = c
T
x (1.1)

subject to

Ax
≤

> b (1.2)
x ≥ 0 (1.3)
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Here, (1.1) is the linear function to be optimized, and it is called the objective
function. The inequalities (1.2) are the constraints that variables must hold and
(1.3) are the nonnegativity constraints.

The elements that appear in the model are the following:

• x, is the vector of decision variables, and contains n variables.

• c
T , is the vector of cost coefficients, and contains n constants.

• b, is the right-hand-side vector, with m constants.

• Matrix A, withm rows and n columns is called the constraint matrix. Each
coefficient aij in A represents the amount of resource i, i = 1, . . . ,m,
needed to perform a unit of activity j, j = 1, . . . , n, and are called the
technological coefficients.

Vectors c
T and b and matrix A are known parameters in the linear model;

vector x contains the variables whose values have to be determined in order to
find the optimal way to assign resources to activities.

1.2 Notation
The linear model can be stated using different notations.

1. We can write the linear model in the following way:

opt z = c1x1 + c2x2 + · · ·+ cnxn

subject to

a11x1 + a12x2 + · · ·+ a1nxn

≤

> b1

a21x1 + a22x2 + · · ·+ a2nxn

≤

> b2
...

... . . . ...
...

am1x1 + am2x2 + · · ·+ amnxn

≤

> bm

x1, x2, . . . , xn ≥ 0
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2. Matrix notation:

opt z = (c1, . . . , cn)
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3. Denoting by a1, a2, . . . , an the n columns of matrixA, the linear model can
be represented as follows:

opt z = c1x1 + c2x2 + · · ·+ cnxn

subject to

a1x1 + a2x2 + · · ·+ anxn

≤

> b

xj ≥ 0 , j = 1, . . . , n

1.3 Linear programming modeling
The first stage in the analysis and solution of a linear programming problem is to
formulate the problem by writing a model that represents it. The process of tran-
scribing the verbal description of a problem into a mathematical form that allows
the application of linear programming techniques is usually called modeling, and
it is a particularly difficult aspect. However, it is important, because the solution
obtained for the problem will depend on the model that has been formulated. Care
must be taken to ensure that the model represents correctly the problem being ana-
lyzed. That is why it is worth focusing on the development of the necessary skills
to formulate the appropriate models.

Operations Research. Linear Programming
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In this section, we present a varied collection of problems that are solvable
by linear programming techniques. It needs to be reminded that the most impor-
tant step in formulating a linear model is the proper choice of decision variables.
If the decision variables have been properly chosen, the objective function and
constraints should follow without much difficulty. When problems arise in deter-
mining the objective function and constraints is usually due to an incorrect choice
of decision variables.

Example 1. A transportation problem.

A company produces bicycles at three plants in cities C1, C2 and C3. Their
production capacity is 1000, 2100 and 1500 bicycles per month, respectively. Four
customers,A,B,C andD, from four different locations are demanding 800, 1100,
900 and 1300 bicycles, respectively, every month.

The following table shows unit costs of transporting a bicycle from a given
city to a given customer, which may depend on the distance between them.

Customers

Cities A B C D

C1 10 8 10 13

C2 19 6 15 16

C3 14 8 9 6

Formulate a model to find the minimum-cost shipping for the transportation
costs given in the table.

• Decision variables.

xij: number of bicycles transported monthly from city Ci to customer j,
i = 1, 2, 3, j = A,B,C,D.

• Objective function: To minimize the transportation costs.

min z = 10x1A + 8x1B + 10x1C + 13x1D + 19x2A + 6x2B + 15x2C+

+16x2D + 14x3A + 8x3B + 9x3C + 6x3D.

• Constraints: Supply and demand constraints must be satisfied.
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* Supply of production plants: the production capacity.

x1A + x1B + x1C + x1D ≤ 1000

x2A + x2B + x2C + x2D ≤ 2100

x3A + x3B + x3C + x3D ≤ 1500

* It is necessary to satisfy customer’s demand.

x1A + x2A + x3A ≥ 800

x1B + x2B + x3B ≥ 1100

x1C + x2C + x3C ≥ 900

x1D + x2D + x3D ≥ 1300

• The nonnegativity constraints.

xij ≥ 0, i = 1, 2, 3, j = A,B,C,D.

Example 2. A production problem.
A firm manufactures three types of pieces, P1, P2 and P3. Three different kind

of machines are used in the manufacturing process, A, B and C. The following
table shows the number of hours each machine is available for manufacturing and
the production cost.

Availability Production cost

Machine (hours/week) (euro/hour)

A 1000 6

B 1000 4

C 1000 5

Each type of piece needs a different amount of processing time in each of the
machines, as can be seen in the following table:

Machine P1 P2 P3

A 1 2 3

B 2 3 1

C 1 1 1

Operations Research. Linear Programming
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Two materials are used in the production process,M1 andM2. The availability
of them is of 1000 kg and 1200 kg, respectively. The following table shows the
amount of material needed in the production of one piece of each type:

Piece M1(kg/piece) M2(kg/piece)

P1 1 2

P2 1 3

P3 3 1

1 kg of material M1 costs 1.5 euros and 1 kg of material M2 3 euros. On the
other hand, each piece is sold at the price of 50, 56 and 70 euros, respectively. The
firm aims to organize the production in order to obtain the maximum benefit from
it.

• Decision variables.
xj: number of pieces Pj that the firm will produce weekly, j = 1, 2, 3.

• Objective function: To maximize the benefit.

* Selling price: = 50x1 + 56x2 + 70x3.

* Materials cost: = (1× 1.5 + 2× 3)x1 + (1× 1.5 + 3× 3)x2 + (3×
1.5 + 1× 3)x3.

* Production cost: = (1× 6 + 2× 4 + 1× 5)x1 + (2× 6 + 3× 4 + 1×
5)x2 + (3× 6 + 1× 4 + 1× 5)x3.

The benefit is calculated as follows:

Benefit = Selling price −Materials cost − Production cost.

This gives us the following objective function:

max z = 23.5x1 + 16.5x2 + 35.5x3.

• Constraints: The availability of machines and material is constrained.

x1 +2x2 +3x3 ≤ 1000 (Machine A)

2x1 +3x2 +x3 ≤ 1000 (Machine B)

x1 +x2 +x3 ≤ 1000 (Machine C)
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x1 +x2 +3x3 ≤ 1000 (MaterialM1)

2x1 +3x2 +x3 ≤ 1200 (MaterialM2)

• The nonnegativity constraints: x1, x2, x3 ≥ 0.

Example 3. A product-mix problem.

A fuel company produces two types of fuel, A and B, by mixing three types
of crude oil. The following table shows the number of crude oil barrels available
and the cost of each barrel:

Availability Cost

(barrels) (units)

Crude oil O1 2000 10

Crude oil O2 3000 8

Crude oil O3 1000 12

The quality of fuels A and B is considered to be acceptable if the crude oil
mixture satisfies the following requirements:

• At least 30% of fuel A must be crude oil O1, at least 20% crude oil O2 and
no more than 30% crude oil O3.

• At least 25% of the composition of fuel B must be crude oil O1, at least
25% crude oil O2, and at least 25% crude oil O3.

The selling prices of a barrel of fuel A and fuel B are 40 and 35 units, respec-
tively.

The aim is to organize the fuel production in order to obtain the maximum
benefit.

• Decision variables:

xij : The amount of barrels of crude oil Oi in the composition of fuel j, i =
1, 2, 3, j = A,B.

• Objective function: To maximize benefit.
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– Selling price: = 40(x1A + x2A + x3A) + 35(x1B + x2B + x3B).

– Production cost: = 10(x1A + x1B) + 8(x2A + x2B) + 12(x3A + x3B).

The benefit is calculated by operating like that: Selling price − Production
cost. We obtain the following objective function:

max z = 30x1A + 32x2A + 28x3A + 25x1B + 27x2B + 23x3B.

• Constraints: They deal with the amount of crude oil barrels available and
the requirements that the mixture must satisfy.

* Availability of crude oil.

x1A + x1B ≤ 2000 (Crude oil O1)

x2A + x2B ≤ 3000 (Crude oil O2)

x3A + x3B ≤ 1000 (Crude oil O3)

* Requirements of fuels.

x1A ≥
30

100
(x1A + x2A + x3A)

x2A ≥
20

100
(x1A + x2A + x3A)

x3A ≤
30

100
(x1A + x2A + x3A)

x1B ≥
25

100
(x1B + x2B + x3B)

x2B ≥
25

100
(x1B + x2B + x3B)

x3B ≥
25

100
(x1B + x2B + x3B)

• Nonnegativity constraints:

xij ≥ 0, i = 1, 2, 3, j = A,B.
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Example 4. A diet problem.

A nutrition center wants to prepare a diet that will satisfy the followingA,B,C

andD vitamin requirements: at least 25 milligrams of vitamin A, between 25 and
30 milligrams of vitamin B, at least 22 milligrams of vitamin C and no more than
17 milligrams of vitamin D.

The following four foods are available for consumption: F1, F2, F3 and F4.
The vitamin content per unit of each food (milligrams per gram) and the cost of a
gram of each type of food are summarized in the table:

Vitamins (mg/g) Cost

Food A B C D (euro/g)

F1 2 1 0 1 0.014

F2 1 2 1 2 0.009

F3 1 0 2 0 0.013

F4 1 2 1 1 0.016

A linear programming model that can be used to satisfy the nutritional require-
ments at minimum cost can be formulated in the following way:

• Decision variables.
xj: grams of each type of food Fj included in the diet, j = 1, 2, 3, 4.

• Objective function: To minimize the cost of the diet.

min z = 0.014x1 + 0.009x2 + 0.013x3 + 0.016x4.

• Constraints: To guarantee that the necessary amount of vitamins will be
included in the diet.

2x1 + x2 + x3 + x4 ≥ 25 (Vitamin A)

x1 + 2x2 + 2x4 ≥ 25 (Vitamin B)

x1 + 2x2 + 2x4 ≤ 30 (Vitamin B)

x2 + 2x3 + x4 ≥ 22 (Vitamin C)

x1 + 2x2 + x4 ≤ 17 (Vitamin D)
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• Nonnegativity constraints: x1, x2, x3, x4 ≥ 0.

Example 5. A cutting problem.
An enterprise produces 5m long wooden sticks. However, customers demand

shorter wooden sticks. In fact, they demand 100 3m long sticks, 100 2m long
sticks, 300 1.5m long ones and 150 1m long sticks. Therefore, the enterprise must
meet its demands by cutting up its 5m long sticks.

The enterprise must decide how each 5m long stick should be cut. There are
different ways to cut them. The enterprise wants to minimize the waste incurred
in meeting the customer demands. The following table shows 7 different ways to
cut the sticks.

Cutting Length

option 3m 2m 1.5m 1m

1 1 1 0 0

2 1 0 0 2

3 0 2 0 1

4 0 1 2 0

5 0 1 0 3

6 0 0 2 2

7 0 0 0 5

• Decision variables.
xj: number of 5m long sticks cut according to cutting option j, j = 1, . . . , 7.

• Objective function: To minimize the total amount of 5m long sticks cut.

min z = x1 + x2 + x3 + x4 + x5 + x6 + x7.

• Constraints: To meet the customers demands.

x1 + x2 ≥ 100

x1 + 2x3 + x4 + x5 ≥ 100

2x4 + 2x6 ≥ 300

2x2 + x3 + 3x5 + 2x6 + 5x7 ≥ 150
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• Nonnegativity constraints: x1, . . . , x7 ≥ 0.

The problem can also be formulated by defining some more possible cutting
options if we consider that pieces of stick less than half a meter long are an ac-
ceptable waste of stick. In the following table the new acceptable cutting options
are shown:

Cutting Length Waste

option 3m 2m 1.5m 1m (m)

1 1 1 0 0 0

2 1 0 1 0 0.5

3 1 0 0 2 0

4 0 2 0 1 0

5 0 1 2 0 0

6 0 1 1 1 0.5

7 0 1 0 3 0

8 0 0 3 0 0.5

9 0 0 2 2 0

10 0 0 1 3 0.5

11 0 0 0 5 0

This time there are 11 cutting options and therefore, 11 decision variables will
be defined to decide the number of 5m long sticks that will be cut according to
each cutting option. The following linear programming model can be used to
determine the optimal way to cut sticks:

min z = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11

subject to
x1 + x2 + x3 ≥ 100

x1 + 2x4 + x5 + x6 + x7 ≥ 100

x2 + 2x5 + x6 + 3x8 + 2x9 + x10 ≥ 300

2x3 + x4 + x6 + 3x7 + 2x9 + 3x10 + 5x11 ≥ 150

x1, . . . , x11 ≥ 0
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1.4 Graphical solution
In general, and even though not all linear problems can be solved graphically, they
all can be geometrically interpreted. It is worth to study the graphical solution of
linear problems, because it enables to observe graphically important concepts in
linear programming, such as the improvement of a solution, types of solutions,
extreme points, etc.

The set of solutions or feasible region of a linear inequality system can be
graphically illustrated by representing the equation associated with each inequal-
ity and determining the half-space that contains the points that satisfy the inequal-
ity. By the nonnegativity constraints, the points can only fall in the first quadrant.
By proceeding this way, we will obtain the polygon of solutions. The objective
function is a family of parallel straight lines, one for each value of z. The line rep-
resenting the objective function is moved in the optimization direction as much
as possible, until the optimal point is reached. If there exists a bounded optimal
solution to the problem, then the optimal value for the objective function will be
found in an extreme point of the polygon.

In this section we analyze the graphical solution of some linear models with
only two variables.

Example. A problem with a unique optimal solution. Consider the follow-
ing linear problem:

max z = 6x1 + 3x2

subject to
2x1 + 4x2 ≤ 8

−x1 + 4x2 ≤ 4

x1 − x2 ≤ 2

x1, x2 ≥ 0

The objective is to choose x1 and x2 such that they verify the constraints and
maximize the objective value z = 6x1 + 3x2.

We can represent graphically the set of points that satisfy the linear inequal-
ities. Each constraint in the model is a half-space in the plane. For example, in
order to represent the set of points satisfying 2x1+4x2 ≤ 8, we draw the straight
line 2x1 + 4x2 = 8. This straight line divides the plane in two half-spaces. The
points satisfying the constraint are contained in one of the two half-spaces. We
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can test whether one point, the origin for instance, satisfies the constraint to decide
which one of the two half-spaces contains all the points satisfying the constraint.
In the graphical representation, we illustrate it by using small arrows. After repre-
senting graphically all the constraints of the problem, including the nonnegativity
constraints, we obtain the set of solutions of the problem, which is shown by the
shaded region in the following graphical representation:

x1

x2

O

A

B

C

D 2x1 + 4x2 = 8

−x1 + 4x2 = 4

x1 − x2 = 2

max

The polygon OABCD is a convex set. The extreme-points in the convex set
can be determined by solving linear equations systems.

The point O is the origin of the coordinate system. The point A = (0, 1) is
the intersection between the straight line −x1 + 4x2 = 4 and the x2 axis. The
point D = (2, 0) is the intersection between the straight line x1 − x2 = 2 and
the x1 axis. The point B = (4

3
, 4

3
) is the intersection between the straight lines

−x1 + 4x2 = 4 and 2x1 + 4x2 = 8. The point C = (8
3
, 2

3
) is the intersection

between the straight lines x1 − x2 = 2 and 2x1 + 4x2 = 8.
We now search for the optimal solution, which will be the point in the feasible

region with the largest value of z. To draw the objective function for a particular
value of z, we choose any point in the feasible region and compute its z value.
We can find all other objective function lines by moving parallel to the line we
have drawn. Thus, we move the line that represents the objective function in the
direction that increases z. Note that we move the line as long as it intersects with
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the feasible region. Once the border of the feasible region is reached, the optimal
solution is found. The graphical representation shows that the optimal solution is
the point C, and that the optimal objective value is z∗ = 18.

Example. A problem with multiple optimal solutions. Let us consider the
following linear model:

max z = x1 + x2

subject to
x1 + x2 ≤ 8

−4x1 + 4x2 ≤ 8

2x1 − x2 ≤ 6

x1, x2 ≥ 0

We proceed as in the previous example to calculate the feasible region. In this
case, the set of solutions is the polygon OABCD that appears shaded in the
graphical solution. Point B is the intersection between lines x1 + x2 = 8 and
−4x1 + 4x2 = 8, thus, B = (3, 5). Point C is the intersection between lines
x1 + x2 = 8 and 2x1 − x2 = 6, thus, C = (14

3
, 10

3
).

x1

x2

O

A

B

C

D

x1 + x2 = 8

−4x1 + 4x2 = 8 2x1 − x2 = 6

max
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z increases as we move the objective function line in a northeast direction, so
the largest value of z in the feasible region occurs at some points on the bound-
ary of the region. Extreme-points B and C, together with all points on the line
segment BC are optimal. The optimal objective function value is z∗ = 8.

Example. An infeasible problem. Consider the following linear model:

max z = x1 + x2

subject to
2x1 + x2 ≤ 5

x1 − x2 ≥ 4

x1, x2 ≥ 0

If we represent graphically all the constraints, we can see that the feasible
region is empty, which means that no point satisfies all the constraints simultane-
ously. Therefore, the linear model is said to be infeasible.

x1

x2

2x1 + x2 = 5

x1 − x2 = 4

Example. An unbounded feasible region. Unbounded solution. Consider
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the following linear model:

max z = x1 + 2x2

subject to
x1 + 2x2 ≥ 2

−2x1 + x2 ≤ 4

x1, x2 ≥ 0

The feasible region for the problem is the shaded unbounded region in the
figure. Moving the objective function line in the optimization direction (northeast
direction, which makes x1 and x2 larger), we see that it will always intersect the
feasible region. Therefore, z has an arbitrarily large value. The optimal solution
is said to be unbounded.

x1

x2

x1 + 2x2 = 2

−2x1 + x2 = 4

max

Example. An unbounded region. A bounded solution. Let us consider this

OpenCourseWare, UPV/EHU



1.4. Graphical solution 17

linear model:

min z = x1 + 2x2

subject to
x1 + 2x2 ≥ 2

−2x1 + x2 ≤ 4

x1, x2 ≥ 0

The feasible region in this example is unbounded, but a bounded solution
can be found by moving the objective function line in the optimization direction
(southwest direction, which makes x1 and x2 smaller). In this case, there are mul-
tiple optimal solutions as points A = (0, 1), B = (2, 0) and the infinite points
lying on the segment line AB are optimal, z∗ = 2.

x1

x2

A

B

x1 + 2x2 = 2

−2x1 + x2 = 4

min

We have illustrated the different types of solutions that can be found while
solving linear problems. We now need to determine the conditions that must hold
in order to identify each of the different kinds of solutions. This will be done in
Chapter 2, and the simplex algorithm will be introduced to solve linear problems.
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In Appendix A, a linear algebra review can be found and definitions and prop-
erties about half-spaces, convex sets, etc. are given in more detail. In Chapter 2,
we will prove that the optimal solution of a linear model lies on an extreme point
of the convex feasible region.
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