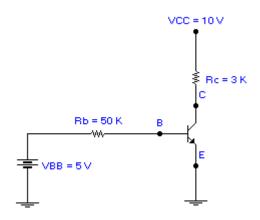
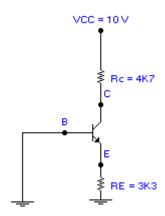

Ejercicios relativos al transistor bipolar

1.- Estudiar los diferentes modos de operaci´on del BJT de la figura en función de $v_{\rm I}$ ($V_{\rm BE}$ ~ 0.7 V).

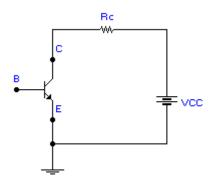

2.- Calcular el punto de trabajo (Q) del transistor de la figura.

DATOS:
$$\alpha = 0.998; \, |I_{C0}| = 1 \mu A; \, R_E = 10 \; k\Omega; \, R_L = 1 \; k\Omega.$$



3.- Determinar el punto de polarización (Q) del transistor de la figura.

DATOS:
$$V_{BE}$$
 = 0.7 V; $|I_{C0}|$ = 20 nA; β =100.


4.- Analizar el circuito de la figura.

5.- En el circuito de la figura, el BJT está conectado de forma que $I_B=0$. Calcular I_C y V_{BE} utilizando el modelo de Ebers-Mollen.

DATUAK:
$$|J_{ES}| = 2 \text{ pA/cm}^2$$
; $\alpha_F = 0.98$; $|J_{CS}| = 7 \text{ pA/cm}^2$; $\alpha_R = 0.28$.

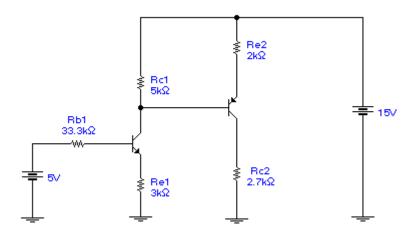
$$kT/q = 0.025 \text{ V}$$
; Áreas: $A_E = A_C = 10^{-4} \text{ cm}^2$.

6.- Se conocen los siguientes datos tecnológicos de un transistor de silicio:

Emisor:
$$N_E = 10^{18} \text{ cm}^{-3}$$
; $L_{nE} = 0.3 \text{ } \mu\text{m}$; $w_E = 3 \text{ } \mu\text{m}$; $D_{nE} = 5 \text{ } cm^2/s$.

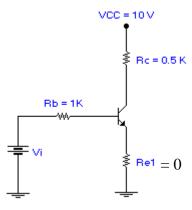
Base:
$$N_B = 10^{15} \ cm^{-3}; \ L_{pB} = 50 \ \mu m; \ w_B = 2 \ \mu m; \ D_{pB} = 7 \ cm^2/s.$$

Colector:
$$N_E = 10^{16} \ cm^{-3}; \ L_{nC} = 20 \ \mu m; \ w_C = 200 \ \mu m; \ D_{nC} = 6 \ cm^2/s.$$


$$n_i = 1.5 \cdot 10^{10}$$
; $V_T = 25 \text{ mV}$.

Suponiendo que el transistor se encuentra en el modo activo, calcular:

- a) Componentes internas de corriente asociadas a los flujos de portadores.
- b) Eficiencia de inyección (γ)
- c) Factor de transporte α_T
- d) α , β y I_{C0} .
- e) Corrientes totales de emisor, base y colector (I_E, I_B, I_C)


7.- En el circuito de la figura, calcular las corrientes de ambos transistores:

DATOS:
$$\beta = 100$$
; $V_{BE1} = 0.7 \text{ V}$; $V_{BE2} = -0.7 \text{ V}$.

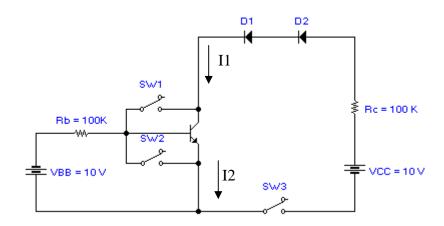
8.- Sabiendo que el transistor de germanio del siguiente circuito tiene como parámetros .

$$\beta=100;\, |I_{C0}|=5~\mu A;\, |I_{E0}|=2~\mu A.$$

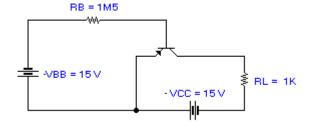
Calcular:

- a) α_R
- b) La corriente mínima de base necesaria para que por el colector pase la máxima corriente posible (aproximadamente).
- c) La tensión de entrada v_I para que obtener $I_C = 10.5$ mA.
- d) La tensión $V_{CE, sat}$ necesaria para obtener $I_B = 300 \mu A$.

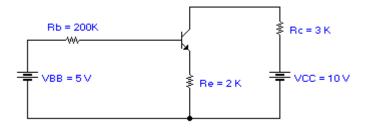
- 9.- En el circuito de la figura inferior se realizan una serie de operaciones y medidas:
 - 1.- Se cierra SW_1 , se abren SW_2 y SW_3 , y se miden las siguientes corrientes:

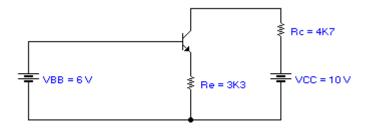

$$I_E = 10 \ \mu A \ y \ I_C = -9.1 \ \mu A.$$

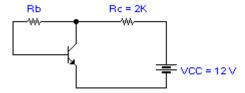
2.- Cerrando SW_2 y SW_3 y abriendo SW_1 , se ha medido $I_C = 13 \mu A$.

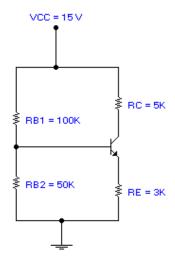

Calcular:

- a) Los parámetros α_F y α_R del transistor.
- b) Las corrientes de saturación I_{C0} e I_{E0}.
- c) Con los interruptores SW₁ y SW₂ abiertos y con SW₃ cerrado:
 - c1) Calcular I₁ e I₂ (con los sentidos indicados en el circuito)
 - c2) Calcular V_{D1} , V_{D2} , V_{CE} y V_{BE} .

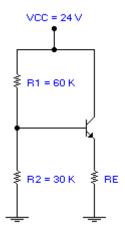

DATOS DE LOS DIODOS: D_1 y D_2 son idénticos, con $I_{sat} = 3.9 \mu A$.


10.- Calcular el punto Q del transistor de la figura, sabiendo que $\alpha=0.998$ e $|I_{C0}|=1$ μA .

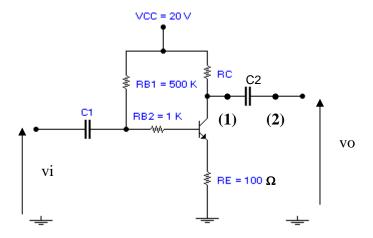

11.- Calcular el punto de trabajo sabiendo que $V_{BE} = 0.7~V;~\beta = 100~e~|I_{C0}| = 20~nA.$


12.- Siendo V_{BE} = 0.7 V y β = 100, calcular Q.

13.- Calcular la resistencia R_B necesaria para que $\ I_C = 2.5 \ mA \ b \ (\beta = 50).$



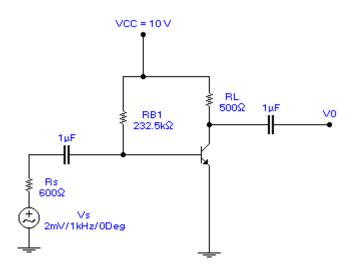
14.- Calcular el punto Q ($\beta=100;\,I_{C0} \thicksim 0).$


olar - Problemas		

1.- Calcular el valor de la resistencia R_E en el circuito de la figura para que la transconductancia g_m sea de $140m\Omega^{-1}$.

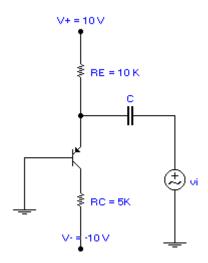
DATOS: kT/q = 25 mV; $V_{BE} = 0 \text{ V}$; $\beta = 80$; $I_{CB0} = 0 \text{ A}$.

2.- Se pretende analizar el comportamiento del circuito de la figura, frente a una señal de entrada v_i sinusoidal. Para ello:



- a) Representar los circuitos equivalentes de polarización y pequeña señal.
- b) Determinar, en función del valor de R_C, los valores de I_B, I_C, V_{CE} y la tensión en el punto (1) correspondiente al punto de trabajo.

- c) Deducir la expresión de la ganancia de tensión $A_V = v_o / v_i$, en función de R_C , y el valor de la componente de señal de la tensión entre el colector y emisor en función de la señal de entrada. (Se puede suponer que $R_C >> R_E$).
- d) Calcular, también en función de R_C, los valores máximos de la amplitud de la señal de entrada, v_i, para los que se alcanza la situación de CORTE y SATURACIÓN respectivamente.
- e) Calcular el valor de R_C y la amplitud de la señal de entrada para los que el BJT entra en CORTE y SATURACIÓN simultáneamente.
- f) Si R_C = 2,5 k Ω y v_i = 100 m V_P , representar gráficamente la tensión en los puntos (1) y (2).

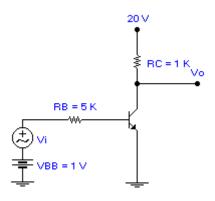

DATOS:
$$C_1 = C_2 = \infty$$
; $\beta = 100$.

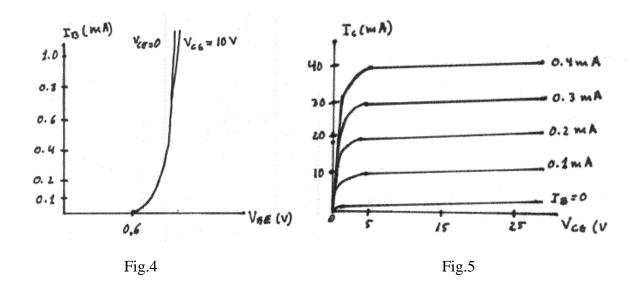
- **3.-** En el circuito de la figura, se sabe que la $I_C = 8$ mA. Determinar:
 - a) Valor de pico de v_s que dé una señal de salida de 2V_P.
 - Valor de pico de la señal de salida con un valor de pico de la señal de entrada de 2 mV.
 - c) Repetir el apartado (b) para $v_s = 265 \text{ mV}_P$.
 - d) Analizar los resultados.



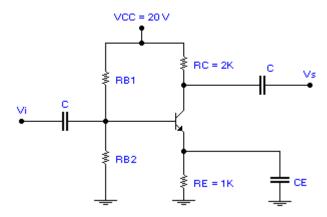
4.- Se desea analizar el circuito de la figura para determinar la ganancia de tensión y la forma de onda de la señal en el colector si $v_i = 10 \text{ mV}_P$. Estudiar los valores máximos de $v_c(t)$. Analizar el máximo valor permitido de v_i para que el circuito amplifique sin distorsión.

$$\beta = 100 \qquad V_{EB} = 0.7 \ V$$

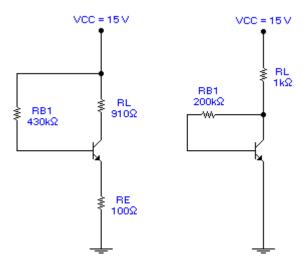

5.- El transistor del circuito de la figura, tiene las características de las figuras 1, 2 y 3. Dibujar, dentro del margen $0 \le v_i \le 3,6 \text{ V}$:



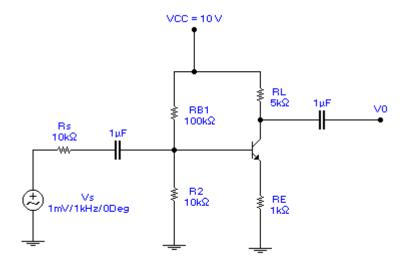
- **6.-** El transistor del circuito de la figura, tiene las características representadas en las figuras 4 y 5:
 - a) Determinar el punto de funcionamiento Q y la β del transistor.
 - b) Obtener la característica de transferencia $v_{CE}(t) v_{BE}(t)$.
 - c) Dibujar la señal de salida cuando:


1.-
$$vi = 0.05 \text{ sen (wt) Volt}$$

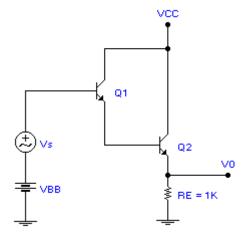
$$2.- vi = 0.7 sen (wt) Volt$$



7.- Calcular los valores de $R_{B1}y$ R_{B2} para obtener una excursión simétrica máxima en la coriente de colector. DATOS: $\beta=100$, $I_{CO}\cong 0$, $C=C_E=\infty$


8.- Se desea polarizar un transistor lo mejor posible respecto a los cambios de β producidos por variaciones de temperatura. Para ello se ha optado por las configuraciones representadas en las figuras. Si se supone que el transistor tiene una β que puede variar entre 100 y 300, determinar cual de las dos polarizaciones es mejor.

DATOS: $V_{BE} = 0.7 \text{ V}.$



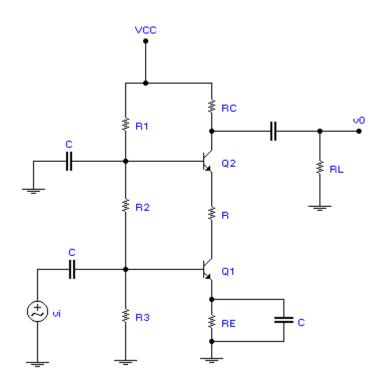
.

9.- El BJT del circuito tiene los siguientes parámetros: $h_{ie}=1,1~k\Omega,~h_{re}=2,5\cdot10^{-9},$ $h_{fe}=50,~h_{oe}=1/40~(k\Omega)^{-1}.$ Calcular: $R_i,~A_I,~A_V,~A_{VS},~R_o.$

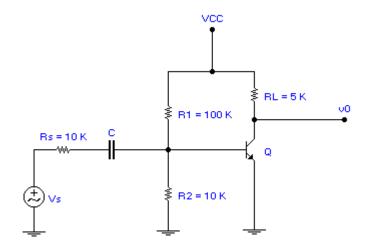
10.- DARLINGTON. Para el circuito de la figura, calcular: R_i , A_V y A_I . DATOS del BJT: $h_{11}=h_i=1$ K1; $h_{12}=h_r=1$; $h_{21}=h_f=-51$; $h_{22}=h_0=1/40$ ($k\Omega$)⁻¹.

11.- En el circuito de la figura, ambos transistores son idénticos y de características:

Transistores:
$$h_{ie}=2K5;\,h_{fe}=100;\,h_{oe}=0\;\Omega^{\text{--}1};\,I_{C0}=0\;pA;\,V_{BE}=0.6\;V;$$

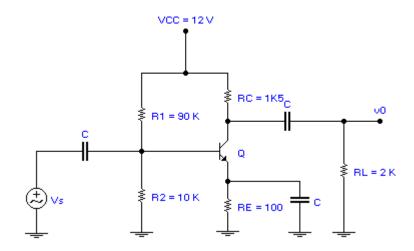

Otros datos:
$$V_{CC}=20~V;~C=\infty~F;~R_1=134~k\Omega;~R_2=~50~k\Omega;~R_3=16~k\Omega;$$

$$R_C = 10 \; k\Omega \quad R_L = 10 \; k\Omega \qquad \qquad R_E = 1 k\Omega \label{eq:RC}$$


Calcular:

- a) Calcular la corriente I_C que atraviesa los colectores de Q1 y Q2. Suponer que las corrientes de base son despreciables frente a la corriente que atraviesa R_1 , R_2 y R_3 .
- b) Calcular el valor de R para que ambos transistores tengan el mismo voltaje V_{CE} de polarización.
- c) Calcular la ganancia de tensión.

NOTA:
$$h_{fb} = -h_{fe}/(1+h_{fe})$$
.


- 12.- Un TRT con β = 50 y V_{BE} = 0,8 V se emplea en un circuito de autopolarización con V_{CC} = 20 V. El punto de trabajo es I_{C} = 2 mA y V_{CE} = 14 V. Se sustituye el transistor por otro con β = 200 y V_{BE} = 0,6 V (I_{CO} no varía apreciablemente). Se desea que debido a la variación de β , I_{C} no aumente en más de 0,1 mA y lo mismo suceda respecto a la variación de V_{BE} . En otras palabras, el nuevo valor de I_{C} con el cambio del transistor no deberá sobrepasar de 2,2 mA. Calcular los valores de las cuatro resistencias R_{E} , R_{C} , R_{1} y R_{2} .
- 13.- En el circuito de la figura, calcular Δ_V , Δ_{VS} , Δ_I y R_i DATOS: $h_{ie}=1K1, h_r=2.5E-4, h_{fe}=50, 1/h_0=40$ k Ω .

14.- En el circuito amplificador de la figura:

- a) Calcular y dibujar las rectas de carga estática y dinámica, definiendo claramente el punto de trabajo.
- b) Dibujar el circuito equivalente de pequeña señal completo.
- c) Con el circuito equivalente simplificado, calcular A_V, A_I, R_i y R_o.
- d) Máximo valor de v_s para que no haya distorsión a la salida.

DATOS:
$$h_{oe} = h_{re} = 0$$
; $h_{ie} = 2$ K Ω ; $h_{fe} = 100$; $C = \infty$.

olar - Problemas		