1.4. PRÁCTICAS PROPUESTAS.

1.1. Expresar gráfica y analíticamente el dominio de las siguientes funciones:

1)
$$y(x) = \frac{1}{\sqrt{1-x^2}}$$

2)
$$y(x) = \sqrt{-x} + \frac{1}{\sqrt{2+x}}$$

3)
$$y(x) = \operatorname{Ln} \frac{x^2 - 3x + 2}{x + 1}$$

4)
$$y(x) = \sqrt[3]{x+1}$$

5)
$$y(x) = \sqrt{-x^2 + x + 2}$$

6)
$$y(x) = \sqrt[4]{\frac{x^2 - 1}{x(x+2)}}$$

1.2. Hallar el dominio de las siguientes funciones:

1)
$$f(x) = \frac{x-1}{x^2 - 3x + 4}$$

$$2) \qquad g(x) = \frac{x-1}{x^2 - 3x - 4}$$

3)
$$h(x) = \sqrt{f(x)}$$

$$4) d(x) = \operatorname{Ln} f(x)$$

1.3. Calcular f+g, f-g, f.g, $f\circ g$ y $g\circ f$ si

1)
$$f(x) = 2x + 5$$
 y $g(x) = x^2$

2)
$$f(x) = x^2 + 3$$
 y $g(x) = sen^2 x$

3)
$$f(x) = \operatorname{Ln} x^2 + 3 \text{ y } g(x) = e^x$$

Cálculo Diferencial con "Mathemática"

1.4. Estudiar el domino de las funciones $f \circ g$ y $g \circ f$ si

$$f(x) = \frac{x^2 - 3}{x - 1}$$
 y $g(x) = \sqrt{x - 1}$.

1.5. Hallar la expresión de las funciones f+g, f-g, f.g, $f\circ g$ y $g\circ f$ si f y g son las funciones definidas a trozos por:

$$f(x) = \begin{cases} 1 - x^2 & \text{si } x \le 0 \\ x & \text{si } x > 0 \end{cases} \quad \text{y} \quad g(x) = \begin{cases} 1 - x & \text{si } x < 0 \\ -2x & \text{si } x \ge 0 \end{cases}$$

- 1.6. Escribir una expresión para la distancia entre el punto P(1,2) y un punto arbitrario (x, f(x)) de la curva $y = \sqrt{x}$. Dibujar el grafico de la curva y utilizarlo para obtener gráficamente el punto de la curva que está mas cerca del punto P. Idem para la curva $y = \frac{1}{x}$.
- 1.7. Si un rectángulo tiene perímetro 100 y base "x". Hallar una expresión que nos de el área A del rectángulo en función de x.
- 1.8. Un rectágulo de base "x" está inscrito en una circunferencia de radio 2. Hallar una expresión que nos de el área A del rectángulo en función de x.
- 1.9. Un campo petrolero con 20 pozos ha estado produciendo 4000 barriles diarios. Por cada nuevo pozo que se perfore, la producción diaria de cada pozo decrece en 5 barriles. Escribir la producción diaria total del campo petrolero como una función del número "x" de nuevos pozos perforados.
- 1.10. Con una hoja de papel rectangular de perímetro 36 se construye un cilindro circular recto. Expresar el volumen V de ese cilindro en función de la altura "x" del mismo.
- 1.11. Representar gráficamente en los mismos ejes las familias de curvas dadas:

1)
$$y = 2 - x^2$$
; $y = -2 + x^2$; $y^2 = 2 - x$; $y^2 = -2 + x$

2)
$$y = 4-3x$$
; $y = -2x$; $y = 2+x$; $5y-2x+4=0$

Cálculo Diferencial con "Mathemática"

3)
$$y = \sin 2x \ e \ y = \sin^2 x$$

4)
$$y = x^2$$
, $y = 4 - \frac{2}{3}x^2$ e $y = x$

5)
$$y^2 = 4x y (x-4)^2 + y^2 = 16$$

6)
$$x^2 + y^2 = a^2$$
 y $x^2 + y^2 - 2ay = 0$.

7)
$$1 = 5x^2 + 4y^2$$
 y $0 = 6 - 7x^2 - y^2$

7)
$$1 = x^2 - y^2$$
 y $0 = 4 - x^2 - y^2 + 2y + 3x$

3)
$$y = \sin 2x$$
, $y = \sin \left(\frac{x}{2}\right)$ e $y = \sin x$

- 1.12. Utilizando el comando Table, generar los siguientes puntos: (0,0), (1,1), (2,4), (3,9), (4,16), (5,25), (6,36), (7,49), (8,64), (9,81) y (10,100). Dibujar la gráfica que forman dichos puntos.
- 1.13. Obtener el siguiente gráfico:

BANDERA OLIMPICA

