OCW 2020

FUNDAMENTALS OF GEOTECHNICAL ENGINEERING

ASSIGNMENTS

LESSON 4
 STRESSES

Jesús M^{a} Hernández
M^{a} Helena Fernandes

Department of Mechanical Engineering
Faculty of Engineering

EXERCISE 1

At a planned construction site, a subsurface sampling shows the following strata:
A) From the ground surface to 4 m depth, a gravel stratum with a dry unit weight of 20 $\mathrm{kN} / \mathrm{m}^{3}$ and a specific gravity of soil solids of 2.65 .
B) From 4 m to 8 m depth, a clay stratum with a water content of 28% and a unit weight of soil solids of $26.66 \mathrm{kN} / \mathrm{m}^{3}$.
C) From 8 m to 10 m depth, a coarse sand with a specific gravity of soil solids of 2.65 and a constant void ratio of 0.38 .

The groundwater table is 2 m below the ground surface. Up to that depth, the water content is very low, 5% approximately, and from the groundwater table there is no capillary rise because the soil is constituted by gravel particles without fines.

Determine:

1. Bulk unit weight of soil in all the strata.
2. Total vertical stress, pore water pressure and effective vertical stress at any point of the ground at 2, 4, 8 and 10 m depth.
3. Effective horizontal stress and total horizontal stress at any point of the ground at 2, 4, 8 and 10 m depth.
4. Plot the distribution of all the stresses with depth.

Additional data: Coefficients of earth pressure at rest, K_{0}.

$$
\text { Gravel: } \mathrm{K}_{0}=0.55 \text {; Clay: } \mathrm{K}_{0}=0.9 \text {; Sand: } \mathrm{K}_{0}=0.45 \text {. }
$$

Answers: 1) $\gamma_{\mathrm{A} 1}=21.0 \mathrm{kN} / \mathrm{m}^{3} ; \gamma_{\mathrm{A} 2}=22.25 \mathrm{kN} / \mathrm{m}^{3} ; \gamma_{\mathrm{B}}=19.37 \mathrm{kN} / \mathrm{m}^{3} ; \gamma_{\mathrm{c}}=21.52$ $\mathrm{kN} / \mathrm{m}^{3}$
2)-3) At 2 m depth: $\sigma_{v}=42.0 \mathrm{kN} / \mathrm{m}^{2} ; u=0 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{v}^{\prime}=42.0 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{H}^{\prime}=23.1$ $\mathrm{kN} / \mathrm{m}^{2} ; \sigma_{H}=23.1 \mathrm{kN} / \mathrm{m}^{2}$. At 4 m depth: $\sigma_{v}=86.5 \mathrm{kN} / \mathrm{m}^{2} ; u=19.6 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{v}}^{\prime}=66.9$ $\mathrm{kN} / \mathrm{m}^{2}$; $\sigma_{\text {н }}$ (gravel) $=36.8 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\text {н }}^{\prime}$ (clay) $=60.21 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}$ (gravel) $=56.4$ $\mathrm{kN} / \mathrm{m}^{2}$; $\sigma_{\mathrm{H}}($ clay $)=79.81 \mathrm{kN} / \mathrm{m}^{2}$. At 8 m depth: $\sigma_{v}=163.98 \mathrm{kN} / \mathrm{m}^{2} ; \mathrm{u}=58.8 \mathrm{kN} / \mathrm{m}^{2}$; $\sigma_{v}^{\prime}=105.18 \mathrm{kN} / \mathrm{m}^{2} ; \sigma^{\prime}{ }_{H}($ clay $)=94.66 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}^{\prime}($ sand $)=47.33 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{H}($ clay $)=$ $153.46 \mathrm{kN} / \mathrm{m}^{2}$; $\sigma_{\mathrm{H}}($ sand $)=106.13 \mathrm{kN} / \mathrm{m}^{2}$. At 10 m depth: $\sigma_{\mathrm{v}}=207.02 \mathrm{kN} / \mathrm{m}^{2} ; \mathrm{u}=$ 78.4 kN/m²; $\sigma^{\prime}{ }_{v}=128.62$ kN/m²; $\sigma^{\prime}{ }_{H}=57.88 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}=136.28 \mathrm{kN} / \mathrm{m}^{2}$.

EXERCISE 2

A 4 m by 5 m rectangular foundation located 1 m below the ground surface (see figure) carries a uniform load q. Calculate the influence coefficient I which is necessary to determine the vertical stress at points K and L .

Answers: $\mathrm{I}_{\mathrm{K}}=0.478 ; \mathrm{I}_{\mathrm{L}}=0.045$.

EXERCISE 3

Two footings located 1.5 m below the ground surface (see figure) carry the same uniform load of $110 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the vertical stress increment at point P, taking into account both footings.

Additional data: unit weight of soil $=20 \mathrm{kN} / \mathrm{m}^{3}$.

Answer: $\Delta \sigma_{v}=8.96 \mathrm{kN} / \mathrm{m}^{2}$.

EXERCISE 4

Two rectangular footings (see figure) carry the following uniform loads: left footing $\mathrm{q}_{\mathrm{L}}=$ $115 \mathrm{kN} / \mathrm{m}^{2}$; right footing: $q_{\mathrm{R}}=135 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the vertical stress increment at point P , taking into account both footings.

Additional data: unit weight of soil $=17.5 \mathrm{kN} / \mathrm{m}^{3}$.

Answer: $\Delta \sigma_{v}=19.41 \mathrm{kN} / \mathrm{m}^{2}$. del País Vasco

EXERCISE 5

A building is to be constructed in an area where the ground surface is horizontal. The foundation of this building, a square mat footing 18 m long, will be placed onto the soil surface and will carry a uniform load of $125 \mathrm{kN} / \mathrm{m}^{2}$. For any point located at the middle plane of the clay layer just below the centre of any side of the foundation, determine:

1) Total vertical stress, pore water pressure, effective vertical stress, effective horizontal stress and total horizontal stress, at the pre-construction phase.
2) Mohr circles of total and effective stresses.
3) Total vertical stress at the post-construction phase.

Answers:

1) $\sigma_{v}=141.25 \mathrm{kN} / \mathrm{m}^{2} ; u=24.5 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{v}^{\prime}=116.75 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}^{\prime}=99.24 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}=$ $123.74 \mathrm{kN} / \mathrm{m}^{2}$; 3) $\sigma_{v}=194.75 \mathrm{kN} / \mathrm{m}^{2}$.

EXERCISE 6

A building is to be constructed in an area where the ground surface is horizontal. A mat foundation located 1 m below the ground surface will be used to transfer the building load uniformly. The mat footing will be 15 m wide and 20 m long and it is assumed that it will carry a load of 30.000 kN . For a point located at the middle plane of the clay layer just below the centre of the footing, determine:

1) Total vertical stress, pore water pressure, effective vertical stress, effective horizontal stress and total horizontal stress at the pre-construction phase.
2) Mohr circles of total and effective stresses.
3) Total vertical stress at the post-construction phase.

Answers:

1) $\sigma_{v}=142 \mathrm{kN} / \mathrm{m}^{2} ; \mathbf{u}=44.1 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{v}}^{\prime}=97.9 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}^{\prime}=88.11 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}=$ $132.21 \mathrm{kN} / \mathrm{m}^{2}$. 3) $\sigma_{v}=208.91 \mathrm{kN} / \mathrm{m}^{2}$.

EXERCISE 7

A civil engineering project is to be constructed in an area where the ground surface is horizontal (see figure). A rectangular foundation located 3 m below the ground surface will be used to transfer the construction load uniformly.

1) At the pre-construction phase, calculate and plot Mohr circles of total and effective stresses at any point of the soil mass 3 m below the ground surface.

Assuming that a 3 m by 3.4 m rectangular foundation will carry a uniform load of 115 $\mathrm{kN} / \mathrm{m}^{2}$, determine, at the post-construction phase:
2) Total vertical stress at points 0 m and 1 m below the centre of the foundation.

Answers:

1) $\sigma_{v}=54.8 \mathrm{kN} / \mathrm{m}^{2} ; \mathbf{u}=11.76 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{v}^{\prime}=43.04 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}^{\prime}=36.58 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{\mathrm{H}}=$ $\left.48.34 \mathrm{kN} / \mathrm{m}^{2} .2\right) \sigma_{v}(0 \mathrm{~m})=115 \mathrm{kN} / \mathrm{m}^{2} ; \sigma_{v}(1 \mathrm{~m})=126.78 \mathrm{kN} / \mathrm{m}^{2}$.
