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OBJECTIVES

Define the functions of probability, density and distribution of
a random variable and identify the differences between them

Understand the concept of characteristic function of a random
variable and be able to calculate different moments through it

v Understand the concept of generating function of a random
variable and be able to calculate different moments through it
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2.1. | Probability function

I. Definition

Let be X a discrete random variable. The probability (or mass) function, p(X),
is defined as:

p: R—>[01]
X— p(x) =P(X =Xx)

In this way the sample space (S) of a discrete random variable is defined as:

S, ={xeR:p(x)>0}

Probability function, p(x), assigns to each point of the sample space, SX, its
probability and will be O for any external point of the sample space.
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2.1. | Probability function

II. Properties

1. p(x)>0, VxelR
2. Z p(Xi) =1
i=1

3. Letbe Ac R, so P(A)= ) p(x;)

xi cA
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2.2. | Density function

Definition

- Let be X a continuous random variable. The density function, f(X), of the X
random variable is defined as:

f:R—>R

b
P(a<x<b):jf(x)dx a,beR beinga<b.

 In this way the sample space (S) of a continuous random variable is defined
as:

S, ={xeR:f(x) >0}

« The probability that a continuous random variable X takes a given value is 0

meaning, P(X =x) =0 VxeR. —
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2.2. | Density function

II. Properties

1. f(x)>0, vxelR

°. Tf(x)dx =1

—00

5. Letbe AC R, so P(A)= jAf(x)dx
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2.3. | Distribution function

I. Definition

Let be X a random variable. The distribution function, F (X), of that random
variable is defined as:

F: R—>[01]
X— F(x)=P(X £X)

Although the definition of the distribution function is the same, its calculation
depends on the nature (discrete or continuous) of the random variable.

In discrete case: F(X) = P(X <X) = Z p(x) VxeR
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2.3. | Distribution function

Definition

In discrete cases, the probability function can be obtained from the
distribution function as follows :

p(x) =F(x)—F(x.)
In continuous case: F(X)=P(X <X) = j‘f f()dt vxelR

—00

In continuous cases, the probability function can be obtained from the
distribution function as follows:

() = dF (x)

dx
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2.3. | Distribution function

II. Properties

. limF(x)=0
o, IImF(x)=1

3. The distribution function is non-descending:

F(x)<F(x,) ¥X,X eR X <X,

4. The distribution function is right continuous.
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2.4, | Characteristic function

Definition

 Let be X a random variable and “t” a real parameter. The characteristic
function of the X random variable is designated with the symbol ¥ (t). Itis a
parametric function that by definition has the following aspect:

W(t)=E(e™)

e o
1

Where “e” is Euler’s number and “i” is the imaginary unit.

* Consequently, using the Euler formula, the trigonometric expression of this
complex number is obtained as:

e™ = cos(tx) + i sin(tx)
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2.4, | Characteristic function

Definition

- If the random variable is continuous, being f(X) its density function:

P(t) = Te“x £(x) dx

- Ifthe random variable is discrete, being P(X) its probability function:

YO =D - plx,)

« As can be seen, the characteristic function in the case of continuous random
variable, is the Fourier transform of the density function.

« Similarly, in the case of the discrete random variable, the characteristic
function can be obtained by Fourier's serial development of the probability

function. v
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2.4, | Characteristic function

Definition

Theorem of uniqueness:

Let be F (X), G(X) distribution functions, which have f(t), g(t) as characteristic
functions, respectively. Let’s assume that f(t) = g(t) Vt e R . Then, for every
value of X, F(X) =G(X).

« As a result of this theorem, the characteristic function of a random variable
uniquely defines its distribution function. That is, all variables that follow
the same distribution function have the same characteristic function and
vice versa.
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2.4, | Characteristic function

. Properties

When the parameter has a null value, namely, when, t =0, the
characteristic function has a value of 1.

Y(0)=E(e™)=E(e’)=E(1)

1

Since the characteristic function is parametric, it is continuous for
every 1.

Calculation of the characteristic function of a linear transformation:
Letbe Y =aX +b

where X is a random variable with ', (t) as characteristic function.

N7} (t) E(e ( |ty) E (eit(ax+b) ) —E (eitax ] eitb) -
"
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2.4, | Characteristic function

. Properties

Since €™ is a constant, using the properties of the mean:
E (eitax . eitb ) _ eitb E (eitax )
When the characteristic function of the random variable X takes

(ta) value, E (eitax) =¥, (ta), so:

Y, (t)=e" ¥, (ta)

4. Calculation of the characteristic function of a linear transformation
between independent variables:

Letbe Z =aX +hY +c¢C
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2.4, | Characteristic function

II. Properties
The characteristic function of the Z random variable:
N7 (t) E(e ( itz ) E (eit(ax+by+c) ) _E (eitax ] eitby ] eitc )

AsX and Y are independent,
‘Pz (t) —E (eitax ) E (eitby ) E (eitc)

Since €'"is a constant, E (eitc) =™, E(e ( 'tax) Y, (ta), namely,
when the parameter of the characteristic function of the variable X

has (ta) value.
In the same way, E (e'tby) =Y, (tb), namely, when the parameter of
the characteristic function of the variable Y has (tb) value, so: mql’
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2.4, | Characteristic function

ol 11 Properties

W, (1) =e" Py (ta)- P, (tb)

- This response can be generalised to any number of sums of independent

random variables, X;, X,,..., X :

Y, (0=, @) ¥, (@) ¥, @0 =] [ ¥, (@)

5. Calculation of the moments of a random variable by means of derivatives of
the characteristic function:

> First derivative:
dE(eM) dem

LIj’(t) == E — E(e'tx)ix S
@ dt dt k>
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2.4, | Characteristic function

ol 11 Properties

» Second derivative:

dE(e™)ix . de™ix
dt dt

» In general, kth derivative:

() = = E(e™)(ix)’

P9(0) dE(™) (i) _dEe™)(ix)"

dt dt

_ E(eitX)(iX)k

If the first derivative is evaluated at t =0

d¥(t)
dt

= E(e™)ix|_ =iE(X)

t=0 K>
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II. Properties:

» In general:

So,

2.4,
d‘Pk(t) :ikE(Xk)
dt |,
1 dP (1) )
= = E(X
ak ik dtk . ( )
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Characteristic function

The characteristic function is very useful to calculate moments of any order.
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2.5. | Generating function

I. Definition

* The generating function of moments is defined as follows:
a(w) = E(e"™)

- It has the same appearance as the characteristic function, but unlike the
previous one, the generating function may not exist.

- For the generating function to exist W€ (—a,a) Va >0 . In this way the
generating function is derivable at W=0.

- Substituting the parameter W by It the characteristic function is obtained .

P (1) = a(iw) = E(e™)
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2.5. | Generating function

Definition

- If the random variable is continuous, being f(X) its density function :
+00
(W) = j "™ -f(x) dx
- Ifthe random variable is discrete, being P(X) its probability function:

a(w) =Y " -p(x,)

* In the generating function the theorem of uniqueness is also fulfilled. All
variables that follow the same distribution function have the same
generating function and vice versa.
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2.5. | Generating function

. Properties

When the parameter has a null value, namely, when, W =0, the
generating function has a value of 1.

a(0)=E(e™)=E(e°)=E(1)=1

As the generating function is parametric, it is continuous for every W .
Calculation of the generating function of a linear transformation:

Letbe Y =aX +b

where X is a random variable with ¢y (W) as generating function.

o, (W) —E (eWy) —E (ew(ax+b)) —E (ewax 'GWb)
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2.5. | Generating function

. Properties

Since " is a constant, using the properties of the mean:
E (ewax _ eWb) _ eWbE (ewax)
When the generating function of the random variable X takes (wa)
value , E (ewax) =, (wa), so:

a, (@) =e" -a, (wa)

4. Calculation of the generating function of a linear transformation
between independent variables:

LetbeZ =aX +bY +c
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2.5. | Generating function

il 11. Properties
The generating function of the Z random variable:
o (W) _E (ewz ) _E (ew(ax+by+c) ) _E (ewax ] ewby ] eWC)
z

As X and Y are independent,

a, (W) =E(e"™)-E(e"™)-E(e™)

Since " is a constant, E (eW°) =" , E (ewax) = Uy (Wa) , hamely,
when the parameter of the generating function of the variable X has
(Wa) value.

In the same way, E (eWby ) =y (Wb), namely, when the parameter of

the generating function of the variable Y has (Wb) value, so: ———
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2.5. | Generating function

ol 11 Properties

a,(w)=e"-a,(wa)-a, (wb)

- This response can be generalised to any number of sums of independent

random variables X, X,,..., X :

a(w)=q, (W) +a, (a,W)+...+a, (a,w)= ﬁ a, (3;w)

5. Calculation of the moments of a random variable by means of derivatives of
the generating function:

> First derivative:

dE(e™) de™

a(t) = = E _ = E(eWX)X emanta zaba ez
@ dw dw k>
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2.5. | Generating function

ol 11 Properties

» Second derivative:

dE(e™)x c de™x
dw dw

» In general, kth derivative :

a''(w) = = E(e"™)x*

dE(eWX)Xk—l - E d(eWX)Xk—l

o' (w) = = E(e™)x"

« If the first derivative is evaluated atw = 0, first-order moment is obtained:

da (W) —F (eWX ) X‘ = E(X) First-order moment -
W=
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II. Properties

2.5.

» In general, to obtain the moment of order k:
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Generating function

da* (w)
dt*

w=0

= E(e™)x* \Wzo = E(x")
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