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OBJECTIVES

 Define the functions of probability, density and distribution of
a random variable and identify the differences between them

 Understand the concept of characteristic function of a random
variable and be able to calculate different moments through it

 Understand the concept of generating function of a random
variable and be able to calculate different moments through it
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2.1. Probability function

I. Definition

• Let be X a discrete random variable. The probability (or mass) function,

is defined as:

• In this way the sample space (S) of a discrete random variable is defined as:

• Probability function, assigns to each point of the sample space, its

probability and will be for any external point of the sample space.

5

 :  0,1

      ( ) ( )

p

x p x P X x



  

( ),p x

 : ( ) 0xS x p x  

( ),p x ,xS
0



2.1. Probability function

II. Properties

1.

2.

3. Let be
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2.2. Density function



2.2. Density function

I. Definition

• Let be X a continuous random variable. The density function, of the X

random variable is defined as:

• In this way the sample space (S) of a continuous random variable is defined

as:

• The probability that a continuous random variable X takes a given value is_

meaning,
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2.2. Density function

II. Properties

1.

2.

3. Let be

9

f( ) 0,    x x  

  so,   ( ) f( )
A

A P A x dx

f( ) 1x dx









2.3.
Distribution 
function



2.3. Distribution function

I. Definition

• Let be X a random variable. The distribution function, of that random

variable is defined as:

• Although the definition of the distribution function is the same, its calculation

depends on the nature (discrete or continuous) of the random variable.

• In discrete case:
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2.3. Distribution function

I. Definition

• In discrete cases, the probability function can be obtained from the

distribution function as follows :

• In continuous case:

• In continuous cases, the probability function can be obtained from the

distribution function as follows:
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2.3. Distribution function

II. Properties

1.

2.

3. The distribution function is non-descending:

4. The distribution function is right continuous.
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2.4. Characteristic function

I. Definition

• Let be X a random variable and “t” a real parameter. The characteristic

function of the X random variable is designated with the symbol . It is a

parametric function that by definition has the following aspect:
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Where “e” is Euler’s number and “i” is the imaginary unit.

• Consequently, using the Euler formula, the trigonometric expression of this

complex number is obtained as:
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2.4. Characteristic function

• If the random variable is continuous, being its density function:

• If the random variable is discrete, being its probability function:

• As can be seen, the characteristic function in the case of continuous random

variable, is the Fourier transform of the density function.

• Similarly, in the case of the discrete random variable, the characteristic

function can be obtained by Fourier's serial development of the probability

function.
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2.4. Characteristic function

Theorem of uniqueness:

Let be distribution functions, which have as characteristic

functions, respectively. Let’s assume that . Then, for every

value of .

• As a result of this theorem, the characteristic function of a random variable

uniquely defines its distribution function. That is, all variables that follow

the same distribution function have the same characteristic function and

vice versa.
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2.4. Characteristic function

II. Properties

1. When the parameter has a null value, namely, when, , the

characteristic function has a value of .

2. Since the characteristic function is parametric, it is continuous for

every .

3. Calculation of the characteristic function of a linear transformation:

Let be

where is a random variable with as characteristic function.
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Since is a constant, using the properties of the mean:

When the characteristic function of the random variable takes

. value , , so:

4. Calculation of the characteristic function of a linear transformation

between independent variables:

Let be

2.4. Characteristic function
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2.4. Characteristic function

II. Properties

The characteristic function of the random variable:

As are independent,

Since is a constant, , , namely,

when the parameter of the characteristic function of the variable z

has value.

In the same way, , namely, when the parameter of

the characteristic function of the variable has value, so:
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2.4. Characteristic function

II. Properties

• This response can be generalised to any number of sums of independent

random variables, :

5. Calculation of the moments of a random variable by means of derivatives of

the characteristic function:

 First derivative:
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2.4. Characteristic function

II. Properties

 Second derivative:

 In general, kth derivative:

• If the first derivative is evaluated at :
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2.4. Characteristic function

II. Properties:

 In general:

• So,

• The characteristic function is very useful to calculate moments of any order.
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2.5. Generating function



2.5. Generating function

I. Definition

• The generating function of moments is defined as follows:

• It has the same appearance as the characteristic function, but unlike the

previous one, the generating function may not exist.

• For the generating function to exist . In this way the

generating function is derivable at .

• Substituting the parameter by the characteristic function is obtained .
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2.5. Generating function

• If the random variable is continuous, being its density function :

• If the random variable is discrete, being its probability function:

• In the generating function the theorem of uniqueness is also fulfilled. All

variables that follow the same distribution function have the same

generating function and vice versa.
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2.5. Generating function

II. Properties

1. When the parameter has a null value, namely, when, , the

generating function has a value of .

2. As the generating function is parametric, it is continuous for every .

3. Calculation of the generating function of a linear transformation:

Let be

where is a random variable with as generating function.
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Since is a constant, using the properties of the mean:

When the generating function of the random variable X takes .

value , , so:

4. Calculation of the generating function of a linear transformation

between independent variables:

Let be

2.5. Generating function
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2.5. Generating function

II. Properties

The generating function of the random variable:

As are independent,

Since is a constant, , , namely,

when the parameter of the generating function of the variable has

v value.

In the same way, , namely, when the parameter of

the generating function of the variable has value, so:
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2.5. Generating function

II. Properties

• This response can be generalised to any number of sums of independent

random variables :

5. Calculation of the moments of a random variable by means of derivatives of

the generating function:

 First derivative:
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2.5. Generating function

II. Properties

 Second derivative:

 In general, kth derivative :

• If the first derivative is evaluated at , first-order moment is obtained:
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2.5.

II. Properties

 In general, to obtain the moment of order k:
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