

FLUID FACILITIES AND MACHINERY

GUIDE TO LABORATORY PRACTICALS

University of the Basque Country (UPV/EHU)

Energy Engineering Department

SELF - ASSESSMENT THEME 2: PUMPS – ROTATION SPEED

- 1. Two identical centrifugal pumps rotating at different speeds:
 - a. Have similar *H-Q* characteristic curves but the maximum efficiency of the faster rotating pump is much higher than the maximum efficiency of the slower rotating pump, according to the corresponding similarity laws.
 - b. Have similar *H-Q* characteristic curves but the maximum efficiency of the slower rotating pump is much higher than the maximum efficiency of the faster rotating pump, according to the corresponding similarity laws.
 - c. Have similar *H*-*Q* characteristic curves with the same efficiency at homologous operating points.
 - d. Have completely different *H*-*Q* characteristic curves, with no similarity between them, due to the variation in rotational speed.
- 2. A centrifugal pump will obtain a hydraulic power for the fluid:
 - a. Higher than the mechanical power provided by the shaft for all the points of operation.
 - b. Higher than the mechanical power provided by the shaft only for the points of operation near to the optimal operating point.
 - c. Lower than the mechanical power provided by the shaft for all the points of operation.
 - d. Lower than the mechanical power provided by the shaft only for the points of operation near to the optimal operating point.
- 3. The overall efficiency of a centrifugal motor pump (centrifugal pump driven by an electric motor) rotating at a given rotational speed:
 - a. Has a maximum for zero flow rates.
 - b. Has a maximum for zero heads (energies).
 - c. Has a maximum for a single operating point.
 - d. Has no maximum since it remains constant for any point of operation.
- 4. The mechanical power of a centrifugal pump:
 - a. Has a maximum for zero flow rate.
 - b. Has several maximums and minimums over the range of pumped flow rates.
 - c. Has a maximum for a single point of operation.
 - d. Has no maximum since it remains constant for any point of operation.

- 5. The *P_{mechanical}-Q* characteristic curve of a centrifugal pump:
 - a. Fits reasonably well to an exponential function.
 - b. Fits reasonably well to a polynomial of degree 2.
 - c. Fits reasonably well to the equation of a line.
 - d. Fits reasonably well to a sinusoidal equation.
- 6. The η -**Q** characteristic curve of a centrifugal pump:
 - a. Fits reasonably well to an exponential function.
 - b. Fits reasonably well to a polynomial of degree 2.
 - c. Fits reasonably well to the equation of a line.
 - d. Fits reasonably well to a sinusoidal equation.
- 7. By varying the speed of rotation of a centrifugal pump:
 - a. The point of operation of the pump is changed.
 - b. The point of operation remains unaffected but a different mechanical power is consumed.
 - c. The point of operation is unaffected but the performance is changed.
 - d. Cavitation occurs.
- 8. In a centrifugal pump and for a given operating point:
 - a. Hydraulic power is greater than mechanical power.
 - b. Hydraulic power and mechanical power are the same.
 - c. Hydraulic power is greater than or equal to mechanical power (depending on fluid viscosity).
 - d. Hydraulic power is less than mechanical power.

