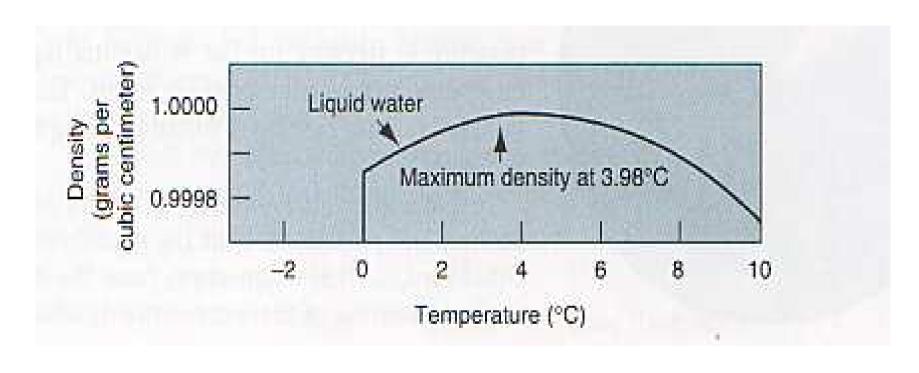

TEMA 1. EL AGUA NATURAL

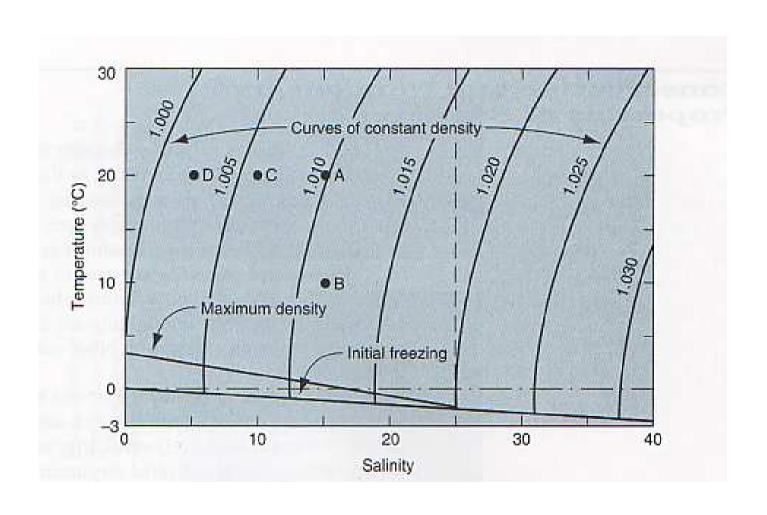
- 1.1.- EL AGUA. CARACTERÍSTICAS Y PROPIEDADES
 - 1.1.1. Características del agua
 - 1.2.2. Propiedad disolvente del agua
- 1.2. IMPURIFICACIÓN NATURAL DEL AGUA
- 1.3. FACTORES QUE INCIDEN EN LA IMPURIFICACIÓN
- 1.4. CUANTIFICACIÓN DE IMPUREZAS. ÍNDICES DE CALIDAD
- 1.5. REPRESENTACIÓN GRAFICA DE LOS ANÁLISIS QUÍMICOS Y CLASIFICACIÓN DE LAS AGUAS DESDE EL PUNTO DE VISTA GEOQUÍMICO .

EL AGUA NATURAL

1.1. EL AGUA. CARACTERÍSTICAS Y PROPIEDADES



Puentes de hidrógeno son responsables de muchas propiedades del agua


1.1.1. CARACTERÍSTICAS DEL AGUA

Peso molecular	18,015
Densidad, kg/m³ (20℃)	998,2
Densidad, kg/m³ (3.98℃)	1000
Viscosidad dinámica, mN.s/m² (20℃)	1,0
Punto de fusión (℃)	0
Punto de ebullición (℃)	100
Calor de fusión, J/g ℃	333,75
Calor de vaporización, J/g ℃	2260 termoreguladores
Calor específico, J/g ℃ (15℃)	4,19
Tensión superficial, mN/m (20℃)	72,75
Constante dieléctrica	78,30
Conductividad eléctrica específica, μS/m (25°C)	5*10 ⁻⁶

Variación de densidad con la temperatura

Variación de salinidad con temperatura

COLOR

- Iones metálicos naturales (hierro y manganeso);Humus, materia orgánica
- Contaminantes domésticos e industriales → industrias de papel, curtido y textil

Color aparente → materia en suspensión

Color verdadero → materia en solución

Medida: 1 mg/L de Platino en la forma de cloroplatinato

TURBIDEZ

Es la dificultad para transmitir la luz → materiales en suspensión, coloidales o muy finos

Medida: Turbidímetros

Comparaciones solución de SiO₂

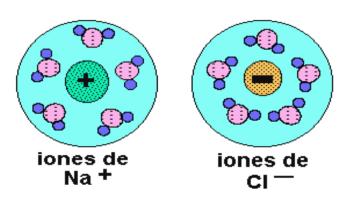
Turbidímetro: Jackson (JTU), formacina (UFT)

Nefelómetro: NTU (unidades nefelométricas)

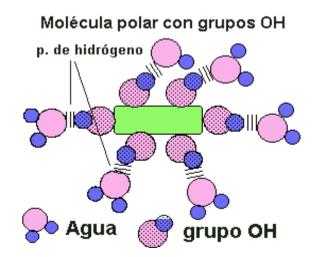
1 NTU = 1ppm Formacina =7,5 ppm SiO₂

Color, turbidez y conductividad → CALIDAD DEL AGUA

Elimina -> Coagulación-Floc, sedimentación, Filtración, cloración


1.1.2. PROPIEDAD DISOLVENTE DEL AGUA

El agua es el disolvente universal


- + Carácter bipolar → gases y sólidos
- + Alta constante dieléctrica (D) → separación de cargas (solubilización de sustancias iónicas)
- + puentes de hidrógeno → disolución de compuestos no iónicos pero con carácter polar (alcoholes, azúcares con grupos **R-OH** , aminoácidos)

disoluciones iónicas

Capa de solvatación

disoluciones moleculares

TIPOS DE DISOLUCIONES

• Sin reacción química

Disolución de gases

Disolución de líquidos

Disolución de sólidos

Con reacción química

Hidratación

Hidrólisis

Redox

рН

• Reacciones biológicas

SOLUBILIDAD DE GASES EN AGUA

Ley de Henry:

$$G = \alpha D P$$

D = masa específica del gas (kg/m³)

P= presión parcial del gas (atmósfera) en contacto con el agua

G = Solubilidad del gas en kg por m³ de agua

 α = coeficiente de solubilidad

Solubilidad de gases (mL/L) a 1 atmósfera						
	agua dulce		agua del mar		mar	
	0 °C	12 °C	24 °C	0 °C	12 °C	24 °C
Nitrógeno	23	18	15	14	11	9
Oxígeno	47	35	27	38	28	22
CO_2	1715	1118	782	1438	947	677

SOLUBILIDAD DE SÓLIDOS EN AGUA

Favorecida por reacciones: ácido-base, redox, hidratación, hidrólisis, etc.

La velocidad de disolución depende:

- + La concentración del soluto en la masa de agua.
- + La superficie de contacto entre soluto y disolvente.
- + La renovación de la superficie de contacto → turbulencia → se mejora la mezcla.
- + La temperatura:

 \uparrow temperaturas \uparrow energía cinética \rightarrow \uparrow renovación del agua con alta concentración que existe en las proximidades del cristal.

excepciones \rightarrow CO₃Ca, SO₄Ca, CO₃Mg, y Mg(OH)₂

SOLUBILIDAD DE LÍQUIDOS EN AGUA

Depende de la polaridad de las moléculas

Miscibles e inmiscibles

DISOLUCIÓN CON REACCIÓN QUÍMICA

Ácido-Base

$$HCO_3^- \Leftrightarrow CO_3^{2-} + H^+$$

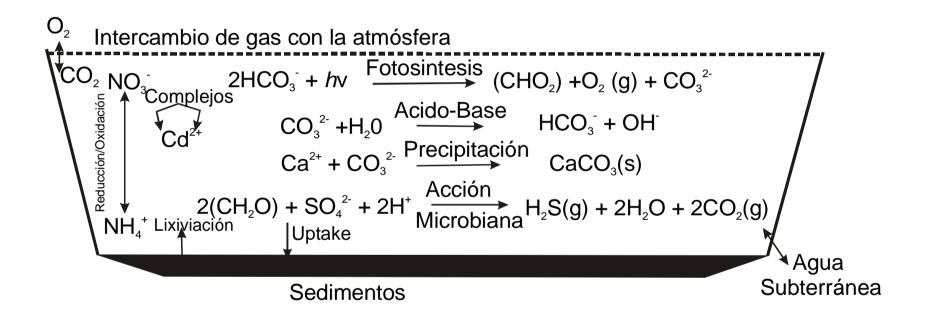
 $HCO_3^- + H^+ \Leftrightarrow CO_2 (aq) + H_2O$

Hidratación

Iones de metales están ligados en agua con moléculas (hidratado) SO₄Ca. 2H₂O

Hidrólisis

$$SO_4Ca \Leftrightarrow CO_3^{2-} + Ca^{2+}$$


Redox

$$4 \text{ Fe}^{\circ} + \text{SO}_4^{2-} + 4 \text{ H}_2\text{O} \iff 3 \text{ Fe}(\text{OH})_2 + \text{FeS} + 2\text{OH}^{-}$$

• pH

$$CaCO_3 + H^+ \Leftrightarrow HCO_3^- + Ca^{2+}$$

REACCIONES QUÍMICAS EN DISOLUCIÓN ACUOSA

1.2. IMPURIFICACIÓN NATURAL DEL AGUA

	Volumen (Km ³)	Masa (gr)	Porcentaje
Agua de Mar	1.37*109	1.4*10 ²⁴	97.2
Hielo	2.9*10 ⁷	2.9*10 ²²	2.0
Agua Subterránea	8.4*10 ⁶	8.4*10 ²¹	0.6
Lagos (A. dulce)	1.3*10 ⁵	1.3*10 ²⁰	0.009
Lagos (A. Salada)	1.0*10 ⁵	1.0*10 ²⁰	0.007
Vapor de Agua	1.3*10 ⁴	1.3*10 ¹⁹	0.0009
Ríos	1.3*10 ³	1.3*10 ¹⁸	0.00009

COMPOSICIÓN AGUA DE MAR

Constituyentes	mg/kg (ppm)
Cloruros	19000
Sulfatos	2700
Sodio	10500
Potasio	380
Calcio	400
Magnesio	1350
Bromuro	65
Bicarbonato	142
Sólidos disueltos totales	34500
Otros sólidos	34
Agua destilada	1.000 mililitros

⁻ Alta concentración en sales

⁻ pH: 8

COMPOSICIÓN AGUA DE LLUVIA

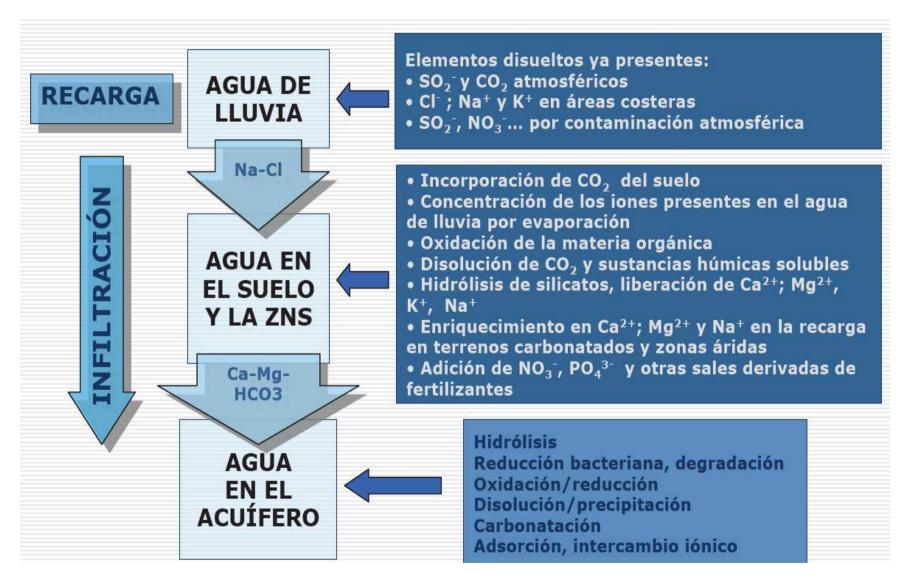
Constituyentes, mg/L	1	2	3	4
SiO_2	0,0		1,2	
Al(III)	0,01			
Ca ²⁺	0,0	0,65	1,2	3,3
Mg^{2+}	0,2	0,14	0,7	0,36
Na ⁺	0,6	0,56	0,0	0,97
\mathbf{K}^{+}	0,6	0,11	0,0	0,23
NH ₄ ⁺	0,0			0,42
HCO ₃ -	3		7	0,0
$\mathrm{SO_4}^{2+}$	1,6	2,18	0,7	6,1
Cl	0,2	0,57	0,8	2,0
NO ₂ -	0,02		0,0	
NO ₃ -	0,1	0,62	0,2	2,2
STD	4,8		8,2	
pH Composición niovo	5.6		6.4	4.4

1, 2, 3, 4 Composición nieve y llúvia en diferentes puntos del Planeta

- Bajas concentración en sales

- pH: 5.5 – 6.5

COMPOSICIÓN DE AGUAS SUPERFICIALES Y SUBTERRÁNEAS


Constituyentes, mg/L	A	В	C
SiO ₂	9,5	1,2	10
Fe(III)	0,07	0,02	0,09
Ca^{2+}	4,0	36	92
Mg^{2+}	1,1	8,1	34
Na ⁺	2,6	6,5	8,2
K^+	0,6	1,2	1,4
HCO ₃ -	18,3	119	339
SO ₄ ² -	1,6	22	84
СГ	2,0	13	9,6
NO_3^-	0,41	0,1	13
Sólidos disueltos totales	34	165	434
Dureza total como CaCO ₃	14,6	123	368

A: agua superficial, granítica

B: agua superficial, arcillosa

C: Agua subterránea

COMPOSICIÓN DE LAS AGUAS

1.3. FACTORES QUE INCIDEN EN LA IMPURIFICACIÓN

- Composición de suelos y terrenos
- Superficie de contacto
- Tiempo de contacto
- Longitud de recorrido
- Concentración de CO₂
- Concentración de sales
- Capacidad de intercambio iónico
- Evaporación
- Difusión
- Presión y temperatura

1.4. CUANTIFICACIÓN DE IMPUREZAS. ÍNDICES DE CALIDAD

TIPOS DE MEDIDAS:

> DIRECTA

INDIVIDUAL: OD, Ca²⁺, SO₄²⁻, pH....

AGRUPADA: Dureza, alcalinidad, residuo seco

➤ INDIRECTA → Conductividad, medida de sales

FORMA DE EXPRESAR LA CONCENTRACIÓN:

mg/L (ppm), μg/L (ppb), meq/L, mol/L

MEDIDA DIRECTA INDIVIDUAL

pН

$$pH = - log [H+]$$

La escala de pH : 0 a 14.

- \succ "neutralidad" \rightarrow pH = 7.
- ➤ Carácter "ácido" implica que su [H+] > [OH-] → pH < 7.
- \triangleright Carácter "básico" \rightarrow pH > 7.

AGUAS NATURALES → pH entre 6 y 9

MEDIDA DIRECTA AGRUPADA

DUREZA

"Cantidad de sales disueltas de calcio y magnesio, principalmente"

Dureza Total (TH): mide el contenido total de calcio y magnesio →THCa THMg

Dureza Temporal (TAC): mide el contenido de carbonatos y bicarbonatos de Ca y Mg. "Dureza de Carbonatos".

Dureza Permanente: mide las sales (sulfatos y cloruros) de Ca y Mg, después de someter a ebullición el agua. "**Dureza de No carbonatos".**

1 $meq = 5 \degree F = 50 \ mg/L \ como \ CO_3Ca$ 1 $grado \ francés = 10 \ mg/L \ CO_3Ca = 0.2meq$ 1 $mg/L \ CO_3Ca = 0.02 \ meq = 0.1 \degree F$

Dureza , mg/L CaCO ₃	Interpretación
0- 50	Agua suave, blanda
50-100	Duras
100-200	Moderadamente duras
>200	Muy duras

PROBLEMAS: Incrustaciones, lavado, cocción

TRATAMIENTOS: Ablandamiento o desmineralización

MEDIDA DIRECTA AGRUPADA

ALCALINIDAD

"Una medida para determinar la capacidad de neutralizar ácidos"

iones bicarbonato (HCO₃-), carbonato (CO₃²-), y en menor medida los oxhidrilo (OH-), fosfatos, ácido silícico u otros ácidos de carácter débil

- ALCALINIDAD TOTAL O TÍTULO ALCALIMÉTRICO COMPLETO, TAC
 viraje del naranja de metilo, a pH entre 4.4 y 3.1 → alcalinidad m,
- ALCALINIDAD SIMPLE O TÍTULO ALCALIMÉTRICO, TA
 viraje de la fenoftaleína, a pH entre 9.8 y 8.2 → alcalinidad p.

 $MEDIDA \rightarrow mg/L CO_3Ca$

TRATAMIENTOS: descarbonatación con cal, tratamiento con ácido o desmineralización

MEDIDA DIRECTA AGRUPADA

RESIDUO SECO (mg/L)

- •El residuo seco (ST) es el peso de materiales después de evaporar un volumen de agua y secar el residuo a 105 °C "contenido total de sales"
- •Si se filtra tendremos en contenido total de sales disueltas (SDT)

	Residuo seco(mg/L)	Sólidos disueltos (mg/L)
Aguas dulces	0-2000 (a veces hasta 3000)	< 1000
Aguas salobres	5000 (a veces hasta 10000)	1000-15000
Aguas saladas	40000 (a veces hasta 100000)	35000
Salmueras	Hasta saturación	

→ Existen relaciones lineales entre SDT y contenido en sales disueltas

ejemplo: para aguas potables, de uso industrial y de generadores de vapor:

$$SDT = 10 TAC + NaCl ppm + 1.48 SO42- ppm$$

TAC = alcalinidad total 1 grado TAC = 10 mg/L CaCO₃

MEDIDA INDIRECTA

CONDUCTIVIDAD

"Es la medida de la capacidad de un agua para conducir la electricidad"

•Es indicativa de la materia ionizable total presente en el agua.

Muestra a la temperatura de 25 ° C	Conductividad, μS/cm
Agua ultrapura	0,05
Agua de alimentación a calderas	1 a 5
Agua potable	50 a 100
Agua de mar	53.000
5 % NaOH	223.000
50 % NaOH	150.000
10 % HCl	700.000
32 % de HCl	700.000
31 % HNO ₃	865.000

Conductividad	Interpretación
< 400	Buena calidad
400-750	Aceptable
750-1500	Mediocre
>3000	Muy mineralizadas

MEDIDA → microsiemens por centímetro (μ**S/cm**)

Relación entre la cantidad de sales disueltas y la conductividad

SDT (mg/L) = C (μ S/cm) * f

f = coeficiente que oscila entre 1,4 a 0,70

COMPOSICIÓN DE LAS AGUAS NATURALES (HIDROQUÍMICA)

Componentes mayoritarios (concentraciones superiores a 5 mg/L)

Aniones	Cationes
Cloruro Cl ⁻	Sodio Na+
Sulfato SO ₄ 2-	Calcio Ca ²⁺
Bicarbonato HCO ₃ -	Magnesio Mg ²⁺

Componentes minoritarios (concentraciones de 10 - 0,1 mg/L)

Aniones	Cationes
Nitrato NO ₃ -	Potasio K+
Carbonato CO ₃ ²⁻	Hierro (II) Fe ²⁺
Nitrito NO ₂ -	Amonio NH ₄ +
Flúor F ⁻	Estroncio Sr ²⁺

• Componentes trazas (concentraciones inferiores a 0,1 mg/L): Br⁻, S²⁻, PO₄³⁻, BO₃H₂⁻, NO₂⁻, OH⁻, I⁻, Fe³⁺, Mn²⁺, NH₄⁺, H⁺, Al³⁺ y metales como As, Sb, Cr, Pb, Cu, Zn, Ba, V, Hg, U, etc.

Valores representativos de composición de las aguas naturales

Aniones	Agua Iluvia	Agua mar	Agua subterránea		
Cloruro	0-20 mg/l	20000 mg/l	10-250 mg/l		
Sulfato	0-10 mg/l	3000 mg/l	10-300 mg/l		
Bicarbonato	0-20 mg/l	120 mg/l	50-350 mg/l		
Nitrato	0 - 5 mg/l	1 mg/l	0-300 mg/l (contam)		
Bromuro	0 mg/l	65 mg/l	0 - 2 mg/l		
Cationes	· ·		Ü		
Sodio		10000 mg/l	5 -150 mg/l		
Calcio		400 mg/l	10-250 mg/l		
Magnesio		1200 mg/l	1 - 75 mg/l		
Potasio		400 mg/l	1 - 10 mg/l		
Estroncio		13 mg/l	0 - 1 mg/l		
Otras caract.					
Conductividad		45000 µS/Cm	100-200 μS/cm		

1.5. REPRESENTACIÓN GRAFICA DE LOS ANÁLISIS QUÍMICOS

Desde el punto de vista geoquímico

Balance iónico:

Diagramas divariantes

Diagramas de barras Collins

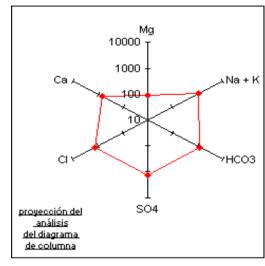
Diagramas circulares

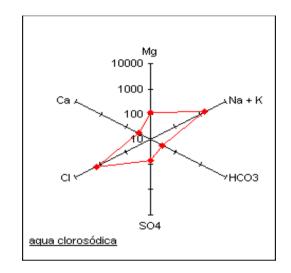
Diagrama de Stiff modificado

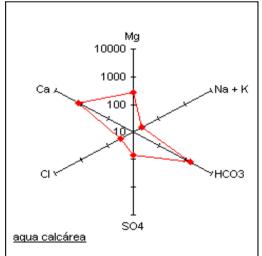
Diagrama radial

- Clasificación según iones dominantes: Diagramas de Piper
- Clasificación según la dureza
- Clasificación por residuo seco y sales disueltas
- Carácter agresivo-incrustante

Permiten obtener una visualización sencilla y lo más completa posible de composición y características químicas de las aguas


BALANCE IÓNICO


- ✓ lones mayoritarios procedentes de la disolución de las sales (meq/L)
- ✓ Cationes se eligen: Ca, Mg, Na, k y aniones: carbonatos, bicarbonatos, cloruros, sulfatos, nitratos.
- ✓ El exceso de aniones o de cationes indicaría la presencia de una posible contaminación en el medio.


REPRESENTACIÓN DE LOS ANIONES Y CATIONES

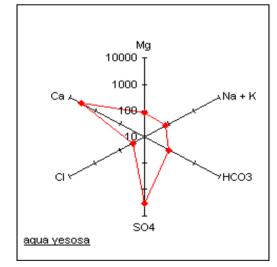
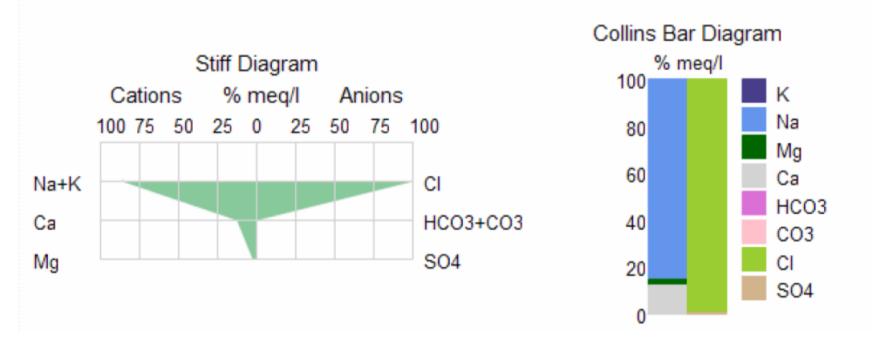

- Diagrama de columna ⇒ en mg/L o el porcentaje de los iones
- Diagrama de coordenadas radiales ⇒ observando la forma de la "estrella".

DIAGRAMA DE COORDENADAS RADIALES - ESTRELLA



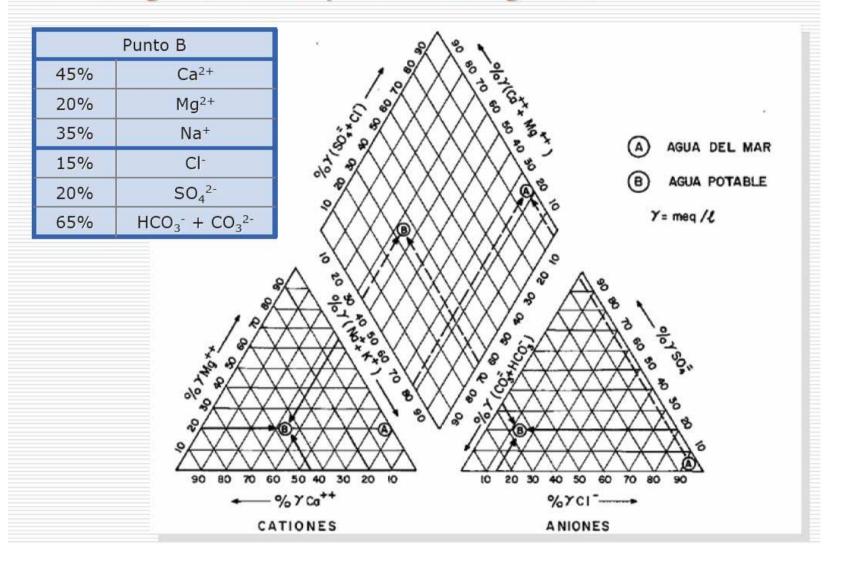


Diagrama de Stiff modificado

Unit	Ca	Mg	Na	K	CI	Br	I	SO4	HCO3	CO3
mg/l	4350	450	34965		62800			101	98	
meq/l	217.07	37.04	1520.88		1771.51			2.1	1.61	
%meq/l	12.23	2.09	85.68		99.79			0.12	0.09	

Diagrama de Piper-Hill-Langelier:

Diagrama de Piper-Hill-Langelier:

CLASIFICACIÓN SEGÚN CARÁCTER AGRESIVO INCRUSTANTE

Método para el cálculo del Índice de Langelier (IL)

LSI (IL) =
$$pH_A - pH_S$$

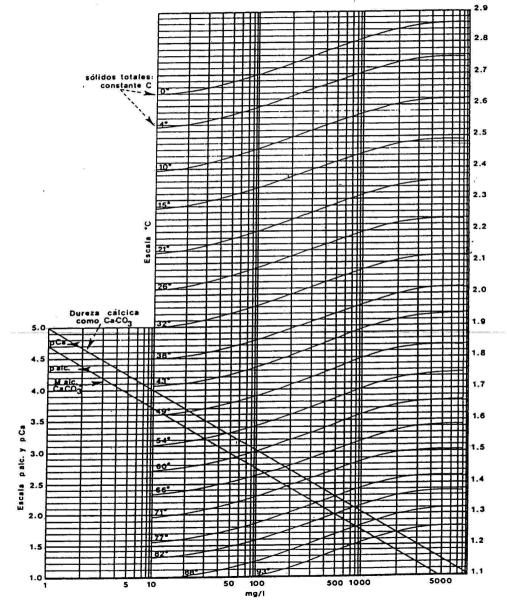
 $pH_A = pH$ actual del agua

pH_S = pH de saturación o pH al cual se logra el equilibrio carbónico del agua

$$pH_S = (9,3 + A + B) - (C + D)$$

$$A = (Log [TDS] -1)/10$$

$$B = -13,12 \times Log (^{\circ}C + 273) + 34,55$$


$$C = Log [Ca^{+2} como CaCO_3] - 0,4$$

 $D = Log [Alcalinidad como CaCO_3]$

CLASIFICACIÓN SEGÚN CARÁCTER AGRESIVO INCRUSTANTE

Indice de saturación de Langelier.

Método gráfico pHs = pCa + pAlc + C

CLASIFICACIÓN SEGÚN CARÁCTER AGRESIVO INCRUSTANTE

Interpretación de los resultados según Índice de Langelier (IL)

Si IL = 0 agua en equilibrio químico

Si IL < 0 agua con tendencia a ser corrosiva

Si IL > 0 agua con tendencia incrustante

IL	Carácter
> 1,5	muy incrustante
1,0 a 1,5	Incrustante
0,5 a 1,0	Débilmente incrustante
0,5 a - 0,5	Prácticamente en equilibrio
- 0,5 a -1,0	Débilmente agresiva
- 1,0 a -1,5	Agresiva
< -1,5	Muy agresiva