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A Practical Procedure to Analyze Singular
Configurations in Closed Kinematic Chains

Oscar Altuzarra, Charles Pinto, Rafael Avilés, and Alfonso Hernández

Abstract—The authors present a general method for the auto-
mated singularity analysis of any mechanism at a given config-
uration. The procedure uses a base of the motion space. This is
obtained from a velocity equation characterized by a geometric
matrix. This special form of Jacobian matrix has some advantages
for automatic implementation. This approach provides the degree
of freedom associated with the singularity, uncontrolled motion,
and kinematic dependencies. It also facilitates the choice of actua-
tors and redundant devices. The method has been implemented in
a computer program for kinematic analysis.

Index Terms—Constraint singularity, geometric matrix, parallel
manipulators, singular configurations, velocity equation.

I. INTRODUCTION

S INGULARITY analysis in mechanisms is a very active
research field. Related issues, such as mobility analysis in

single closed-loop and one degree-of-freedom (DOF) linkages
[1], [2], have been studied already. The singularity problem in
serial manipulators has been analyzed and solved [3], [4]. In
[5]–[9], singular configurations in parallel manipulators and
hybrid-chain manipulators have been obtained. Even a unified
approach to the singularity analysis of redundant input–output
devices [10] has been proposed. At present, singular configura-
tions are still being identified as it is the case of the so-called
constraints singularities [11]. It is widely assumed that this line
of research has not yet reached its maturity.

In recent times, several classifications of singular configu-
rations have been issued, some of which should be noted in
particular: Ma and Angeles [12] typify architecture, configura-
tion, and formulation singularities; Notash [13] divides them in
branch degeneracy and uncertainty configuration; and Park and
Kim [14] propose configuration space singularity, actuator, and
end-effector singularities. Nevertheless, in our view, three clas-
sifications could be highlighted. The first is that proposed by
Hunt [15]. In this magnificent text, the basic concepts to de-
fine a singular configuration are established. This apparently
simple classification into stationary and uncertainty configura-
tions covers every recent variation. The second is from Gosselin
and Angeles [16] and uses the input–output implicit function to
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provide two Jacobian matrices [A] and [B]. Mathematical sin-
gularity of those matrices leads to three types of physical singu-
larities. In the third [17], Zlatanov et al. propose a more detailed
classification of singularities into six different types [redundant
input (RI), redundant output (RO), impossible input (II), impos-
sible output (IO), increased instantaneous mobility (IIM), and
redundant passive motion (RPM)]. In this paper, a classification
of singularities is also proposed. The object of this classifica-
tion is not to put forward new types but to adequate them to the
analysis method that will be explained later.

To detect and/or analyze singular positions, symbolic com-
putation has been used only in particular parallel robots, and
algebraic methods seem quite limited. Some authors propose
methods based on the degeneracy of the screws [18]. These are
similar to another method based in the Grassmann (or line) ge-
ometry [19]. Another alternative is that proposed by Park and
Kim [14], in which Riemannian geometric formulation is em-
ployed to characterize a singularity as a dimensional change in
manipulability.

Numerical methods, on the other hand, even being easily au-
tomated, have difficulties finding all singular positions in the
workspace. Regarding strategies to find every singular config-
uration in any manipulator, in [20] a general algorithm is pre-
sented. This is capable of automatization, although some of its
phases would require a deep knowledge of the specific linkage
analyzed.

Each of these methods are based on the Jacobian matrix of
the position equations. Hence, this background should not end
without a reference to Freudenstein [21] that laid the basis of
these approaches.

Nevertheless, the authors believe that there is still much re-
search to be done. The contents of this paper do not intend to
solve every existing unknown but to contribute with a valid tool
to understand the kinematic behavior in singular positions. The
method proposed will help to design parallel manipulators, pro-
viding a tool for the singularity-free path planning.

The procedure presented in this paper is valid for open,
closed, or hybrid kinematic chains and redundant or nonre-
dundant manipulators. This is because the approach chosen is
independent of the choice of inputs and outputs.

The structure of the paper is as follows. In the second section,
the velocity equation used is explained. A very specific Jacobian
matrix called the geometric matrix is used. Its choice is due to
some good characteristics for singularity analysis. In Section III,
a simple classification of singularities is presented. They are de-
fined and briefly compared with other classifications already ref-
erenced. In Section IV, the method for analysis of a given config-
uration is explained for the different types of singularities. It is
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based in the vectors that form a basis of the null-subspace of the
geometric matrix. In Section V, a numerical method for the detec-
tion of singular positions is proposed. Up to now, this method has
some limitations, as it only detects singular positions in the path
followed by the manipulator inside the workspace. To do that, the
first nonzero eigenvalue and the determinants associated with the
dependable kinematic parameters are used as indexes. Its ad-
vantages are that it is an easily automated method, fast in com-
putational terms, and valid for any manipulator’s topology. In
Section VI, we present a brief discussion on the possibilities of
applying this procedure for the singularity mapping.

II. VELOCITY EQUATION

An element of a mechanism may be modeled with two nodes
in planar cases and three in spatial ones. Differentiation of the
rigid body condition on the node coordinates produces a ve-
locity equation of the form [22]

(1)

where is the vector containing the components of the nodal
velocities in the element , and is called the geometric ma-
trix of the element . This matrix has the data related to link
orientation but it is independent of its length, section, or other
mechanical properties. If the mechanism is modeled with
elements and nodes, the velocity (1) of every one of the
elements may be expanded to the dimension of the total number
of components of the nodes

(2)

where is the vector containing the components of the nodal
velocities in the mechanism, and is the geometric matrix of
the element expanded to the complete dimension. Assembling
the matrices of all the elements provides the geometric matrix

for the complete mechanism

(3)

Kinematic pairs are introduced through the conditions with
which nodal velocities have to comply. For example, nodes are
merged in revolute pairs in planar mechanisms and spherical
ones in spatial linkages as linear velocities are equal. Finally, the
velocity equation for the complete mechanism may be expressed
as

(4)

and provides the solution of kinematic analysis for velocities.
In the Appendix, application of the geometric matrix to the

four-bar linkage is presented to show the ease of this approach
and its ability to be automated for any mechanism. In the case
of planar mechanisms with only revolute pairs or spatial mech-
anisms with spherical ones, the geometric matrix is indepen-
dent of the dimensions of the linkage. Nevertheless, the effect
that special dimensions have in singular positions is considered
through the corresponding orientations.

The geometric matrix is, in fact, a particular case of Jacobian
matrix. The geometric matrix has some advantages in relation

to singularities that will be shown in the following sections. For
example, it is homogeneous, the finding of the DOF in a sin-
gular position is direct, and the method facilitates the choice of
actuators.

III. CLASSIFICATION OF SINGULARITIES

A definition for singularity has been often stated from the
point of view of the mathematic impossibility in solving the
kinematic problem in certain positions [12], [14], [16], [20],
[23]. Nevertheless, any definition for singularity has a physical
notion. A singularity occurs whenever there is an instantaneous
or permanent, global, or local alteration of the full-cycle mo-
bility, leading to either the blockage or the loss of control of
some link. In that sense, the authors propose two singular situ-
ations: when there is an increase in the full cycle mobility and
when there is some unexpected dependency among kinematic
parameters in the linkage. The first kind of singularity is widely
accepted in the sense given here. Regarding the second one, it is
a generalization of the concept that involves the different types
already defined in the references, such as stationary configura-
tion [15] or RI, RO, IO, II [17].

A. Increased Mobility Configuration

First, a singularity occurs when the full-cycle mobility of
the mechanism is increased, and as a consequence, the motion of
the mechanism as a whole is altered. In this paper, the increased
mobility (IM) singularity is proposed in the same terms than
the configuration space singularity proposed by Park and Kim
[14], and the IIM by Zlatanov et al. [17]. In a practical sense,
the IM requires additional inputs to define the motion in that
position whether other types will require a change in the choice
of inputs. In addition, it should be mentioned that this type of
configuration is instantaneous, but may be chained to adjacent
IM poses acquiring apparently a permanent nature.

B. Dependent Kinematic Parameters Configuration

In a mechanism, there are independent kinematic parameters
that completely define its motion in a nonsingular configuration.
Those kinematic parameters can be identified as derivatives of
the generalized coordinates and are chosen in sets of, for ex-
ample, module of the angular velocity or nodal velocity.

A singularity of this type occurs when, due to the specific con-
figuration of the mechanism, an unexpected dependency exists
among some of the full-cycle independent kinematic parame-
ters. This is called a dependent kinematic parameter (DKP) con-
figuration. Such an occurrence suggest a change in the location
of the DOF in the mechanism affecting locally some parts of the
linkage, such as the input or the output.

A linkage provides a motion as a function of indepen-
dent kinematic parameters; therefore one expects to get equa-
tions that relate kinematic parameters, being greater than

. For example, in the 3-RRR planar platform in Fig. 1, equa-
tions could be obtained relating angular velocities of links
weighted with coefficients as follows:

(5)

When such a relationship may be found among kine-
matic parameters with full cycle independence, some singularity
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Fig. 1. The 3-DOF linkages in DKP configuration (a) r = F and (b) r < F .

is affecting the linkage. A finite number of sets of such kine-
matic parameters are chosen to check their independency, i.e.,
inputs and outputs.

1) DKPs in the Input: The fact that there exists some de-
pendence among the possible inputs implies that there is a pos-
sibility of motion in the mechanism when those inputs are null.
In that sense, the output gains some DOF. For example, in the
case in Fig. 1(a) the relationship among the links (1, 2, 3) with
fixed pairs is

(6)

The same considerations may be done when there exist equa-
tions like (5) with kinematic parameters, as is the case of
the configuration shown in Fig. 1(b) where an equation relating
angular velocities of the links (1, 2) with fixed pairs is found:

(7)

These configurations correspond to type 2 in the classification
proposed by Gosselin and Angeles, and II singularities (and RO
or RPM, depending on where is the uncontrolled motion) in
Zlatanov’s.

2) DKPs in the Output: If the kinematic parameters consid-
ered are the ones defining the desired output, an analogous anal-
ysis may be performed using nodal velocities, angular veloci-
ties, or joint velocities. In that case, DKP configuration corre-
sponds to a type 1 and IO configuration.

3) Link Impossible Motion: The limit to those relationships
is , where an independent kinematic parameter is null
whatever inputs given. Upon evaluation of the kinematic param-
eters that define completely the velocity of a link, if all of them
are included in equations of this type, the link will have lost
its capacity for motion. This configuration is called link impos-
sible motion (LIM). This may occur in input, output, or passive
links. The last case may not show a practical advantage when
analyzing the motion of the input or output but it could influ-
ence operations such as calibration or redundant sensoring. An
example is given in the 3-RRR linkage in Fig. 2, where the link
with fixed pair on the right is motionless.

It may also occur that a group of independent kinematic pa-
rameters are related through more than one equation. Moreover,
it can be noted that configurations with DKPs may be found in
increased mobility configurations.

This approach may be also used to determine the DOF of the
gripper in a parallel manipulator. This is useful to detect con-
straint singularities. A study of dependencies among the kine-
matic parameters that define the motion will indicate how many
are independent and therefore the DOF.

Fig. 2. The 3-DOF mechanism in DKP configuration r = 1.

IV. METHOD FOR SINGULARITY DETECTION

The geometric matrix provides the feasible motions of the
linkage (the null-space of ) referred to as the motion space
[24]. Its dimension is the instantaneous DOF of the linkage in
a given configuration. Equation (4) is a particular case of the
following equation when the value of is null:

(8)

The eigenvectors , corresponding to the null value of
, are linearly independent and constitute a basis for the sub-

space of dimensions. This subspace of a vector space with
dimensions of the matrix forms the space of possible mo-
tions of the mechanism. Any vector representing a motion of
the mechanism is a linear combination of those vectors. Instan-
taneous nodal velocities are expressed by the following equation
in matrix form:

(9)

This equation provides a relationship between all compo-
nents of nodal velocities in the vector (planar ,
spatial ) and the eigenvectors weighted with
terms, where is the instantaneous DOF. Matrices (formed
in columns by the eigenvectors) and give a compact
expression.

In some cases, it is more common to use the angular velocity
of the links. Then, an expression is found relating the compo-
nents of the angular velocities of the links to the nodal ve-
locities, using the velocity field

(10)

where is the vector of components of angular velocities
(planar , spatial ), and is the matrix with
the coefficients that relate components and the terms in (9).
Expressions with joint velocities can be found easily. In planar
mechanisms, subtracting in (10) the corresponding rows of the
angular velocities of the links that come to the joint, and in spa-
tial ones, the components. If angular as well as linear velocities
are to be considered in the analyses, a total or partial combina-
tion of (9) and (10) can be used.

All of these systems of equations are the tool to identify and
classify the singularities proposed in the previous section.
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Fig. 3. Double butterfly mechanism moved to an IM configuration and the plot
indicating IM proximity.

A. IM Configuration

IM singularity existence is detected in the instantaneous DOF.
As this is coincident with the number of null eigenvalues, the
proximity of the first nonzero eigenvalue to null indicates the
proximity to IM singularity. In the software developed by this
research team, the motion of the linkage is simulated using fi-
nite displacement analysis. The geometric matrix is found for
every configuration reached, and the null eigenvalue problem is
solved. The number of null eigenvalues indicates the instan-
taneous DOF. In a nonsingular position is equal to the full-cycle
mobility . A plot of the variation of the first nonzero eigen-
value along the motion is produced. In Fig. 3, a 1-DOF linkage
is moved from (a) a nonsingular position to (b) an IM configura-
tion. In Fig. 3(b), the paths of three nodes have been plotted, and
the graph in Fig. 3(c) shows the variation of the second eigen-
value toward a null value.

Once an increment in is detected, upon evaluation of the
rank deficiency of the geometric matrix, a deeper analysis is car-

Fig. 4. Vectors of the motion space and the two different possibilities of motion
after IM.

ried out. The increment in the DOF of the linkage implies the ex-
istence of uncontrollable motion in the mechanism. Such a po-
sition is usually avoided, but it can also be surpassed with addi-
tional inputs (either redundant inputs or locking devices). From
a theoretical perspective, the uncertainty positions are points of
bifurcation in the path. Therefore, it is quite interesting to ana-
lyze the possibilities of motion from that position. In that field,
vectors of the null subspace play a major role.

In the example of Fig. 4(a), the two vectors of the motion
space are found as the two eigenvectors corresponding to a null
eigenvalue. The two different motions may be found upon linear
combination of both vectors and provide the two branches of the
path from that position. A further examination of those vectors
indicates that, in this example, the instantaneous center of rota-
tion of the coupler in both possible motions is in the same point

. This causes the branches to be tangent in the double point.
In Fig. 4(b) and (c), the linkage is shown in the two different
branches. In Fig. 5, the path of the revolute pair already men-
tioned is plotted, showing the existence of two other points of
bifurcation, and therefore, IM configurations.

To analyze the possible motion when inputs are locked, (9)
and (10) are used. equations corresponding to the null inputs
are extracted from those expressions. This system of equa-
tions in unknowns (the terms) has infinite solutions.
minus terms are selected and the rest are expressed as a
function of them. A proof value to these will provide different
solutions to and, upon substitution in (9) or (10), the un-
controllable motions.
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Fig. 5. Path of the upper R pair with three bifurcation points (black dots).

For example, if working exclusively with angular velocities,
the extracted system of equations would be

(11)

where is the vector with the input rotations,
is the matrix with the correspondent rows from matrix , and

are the terms. In the example of Fig. 5, and ,
one of the terms is found as a function of the other. A proof value
of 1 will give the uncontrollable form of the motion.

In spatial mechanisms, a branching of the configuration space
lately called constraint singularity [11] can also be analyzed
with this approach. The DOF of the platform could be found
searching for the independency of the kinematic parameters that
define its motion, i.e., the components of the nodal velocity of a
point in the platform and the components of the angular velocity.

B. DKP Configuration

The DKP configuration of a mechanism is detected again
using a system of equations extracted from either (9) or (10)
or even a combination of them. Sets of kinematic parameters
are chosen to perform an analysis of their independency. This
choice has to be done carefully, as kinematic parameters that
could define the motion completely are needed.

In this way, an analysis of the selected input links or platform
kinematic parameters may be performed, but it is also possible
to perform a wider analysis to check dependency among every
link in the mechanism in order to choose the more interesting
links to be the input(s) or output(s).

Fig. 6. Uncontrolled motion in DKP configurations.

1) DKP in the Input: Rows in the systems (9) or (10), cor-
responding to the kinematic parameters chosen as inputs, are
extracted to constitute the system of equations to be analyzed.
For example, in planar mechanisms, when dealing with link an-
gular velocities exclusively, the expression extracted from (10)
will be as follows:

(12)

where is the vector with components of link rota-
tions, is the matrix with the correspondent rows from
matrix , and are the terms. When prismatic pairs are
used as inputs, an analogous expression may be used combining
equations extracted from (9) or (10).

If the rank of square matrix is less than , there is a
dependency among the equations in (12) and therefore among
the rotations in . That dependency may be found using
standard matrix procedures and will provide as many equations
as the rank deficiency of with the form

(13)

An example may be found in Fig. 1(a), whose DKP equation
(6) is found with this method.

If the relationship is among kinematic parameters, the
coefficient of the parameters not included in the relation will
be null. Linkage in Fig. 1(b) is an example, with being its
DKP relationship (7).

This method will also detect the uncontrolled motion when
every input is locked. In this case, (12) is used with the input
links set to zero

(14)

As there is a rank deficiency, infinite solutions to the terms
are obtained in the homogeneous system of (14). Using a proof
value for the terms, with (9) and (10) the unexpected motion is
found. In Fig. 6, the nodal velocities of the uncontrolled motions
in those configurations are shown.

In order to check automatically if the uncontrolled motion
involves the end-effector, its kinematic parameters will be an-
alyzed. The components of one nodal velocity and the angular
velocity are chosen, and if the parameters obtained before pro-
duce nonzero solutions in (15) the uncontrolled motion involves
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Fig. 7. Vectors of the motion space of a 3-DOF platform in IM.

the end-effector. A higher rank deficiency of (14) produce sev-
eral sets of parameters that have to be analyzed

(15)

2) DKP in the Output: The same method is applied to the
output kinematic parameters. This method can be applied even
when this type of singularity occurs at the same time as an IM
singularity. In the position of the 3-RRP planar platform shown
in Fig. 7, the linkage is in an IM configuration.

The whole mechanism has an instantaneous DOF equal to
four. The motion of the platform can be defined by the velocity
in the upper node and the angular velocity. If those kinematic
parameters are chosen, an expression analogous to (12) is de-
fined as

(16)

Finding the possible dependencies in (16) provides two equa-
tions analogous to (13):

(17)

and therefore, the platform has only one DOF. The same may be
deduced from the plot of the vectors of the motion space (num-
bered in Fig. 7), where only eigenvector 4 involves the platform.

3) LIM: Finding an equation with implies that some
kinematic parameter is null whatever the input given. If all of the
kinematic parameters that define the motion of a link are null,
this link is locked. The method to detect this kind of position
is straightforward using (9) or (10). Whenever there is a null
row in matrices or , the correspondent nodal or angular
kinematic parameter is null for any terms and, hence, any
inputs given. When a link is analyzed, rows correspondent to a
node and to the angular velocity of the link are checked. If those
rows are null, the link is in LIM in that position independently
of the inputs, which is a potential problem in most cases. This
analysis provides the user with very useful information when
choosing inputs or outputs.

Fig. 8. IM configuration and node velocities in a linkage in a DKP configura-
tion with r = 1.

If the mechanism in Fig. 5 is moved to the IM configuration
corresponding to the lower left bifurcation point [Fig. 8(a)], two
possibilities of motion are found. One of them goes on with the
motion along the path drawn, but the other one is the motion of
part of the linkage while the rest is locked [Fig. 8(b)]. In that
case, a DKP configuration with happens in the kinematic
parameters that define the motion of the locked links.

V. A PROCEDURE FOR SINGULARITY ANALYSIS

An automatic detection and classification of the singular po-
sitions encountered by the mechanism as its motion is simulated
has been implemented in computer software developed by this
research group. The procedure will allow not only the detection
of singularities defined earlier, but will also provide the uncon-
trolled motions and dependencies that appear.

Even when this procedure will not detect a priori every sin-
gular configuration of a mechanism, it can be used to find every
singular configuration inside the simulated range of motion of
the inputs, that is, in the predefined and under-evaluation prac-
tical workspace. The automatic capability permits an iterative
analysis of different node paths of the linkage, and the inspec-
tion of indicators, such as the first nonzero eigenvalue or the rank
deficiency of the matrices indicated in the previous section, will
point out singularities. A wider iterative process on a discretiza-
tion of the workspace is feasible and would eventually detect
every singularity of the mechanism. However, further research
must be done in that sense.

In any event, the process would be as shown in Fig. 9, in every
position reached.

For each position, the geometric matrix is found and the
eigenvalue problem is solved. Eigenvectors corresponding to
null eigenvalues generate matrices and .

First, for each link, the kinematic parameters that define its
motion are checked. They can be null due to boundary condi-
tions (e.g., a fixed node). But they can also be null due to the
special configuration. This is checked in the corresponding row
in matrices and . In this case, a DKP equation with
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Fig. 9. Algorithm for the singularity detection in a given position.

appears. If all of the kinematic parameters of a link are null, this
is in an LIM singular configuration.

Second, an increment in the number of null eigenvalues
(the instantaneous DOF) over the mobility will identify the
IM singularity. A further analysis can be done for the input
links using (11). That solution provides the uncontrollable mo-
tion under locked inputs in that configuration. Also, the DOF of
the platform may be evaluated choosing the kinematic parame-
ters that define its motion and checking their dependency with
equations such as (16). Once this is done, constraint singulari-
ties may be detected.

On the other hand, if equals , there is still the possibility
of being in a DKP configuration. To determine these configura-
tions, it is necessary to choose as many kinematic parameters as
the DOF. The user can analyze specifically the links that have
a greater interest for being either input or output. A complete
automatization will need different combinations of links in the
linkage covering not only input and output but also passive links.

Once the input kinematic parameters have been chosen,
depending on their nature, equations like (12) or similar are an-
alyzed. The rank of the matrix of those coefficients in-
dicates whether there is a DKP in the input. Those dependencies
may be found to get expressions such as (13), and the analysis
of the motion when those links are locked may be performed
with (14).

The same is performed for the kinematic parameters of the
output. In this case, finding the DOF of the output platform is
useful.

When links are not in an LIM configuration, the linkage is not
in an IM position, and the kinematic parameters in the input
or output are independent; the linkage is nonsingular.

Fig. 10. Graph of the IM indicator along the motion.

A numerical analysis as the one described requires a careful
evaluation of the tolerances admitted when considering that an
eigenvalue is null or that a rank deficiency occurs. In that sense,
the graphs commented in previous sections facilitate the criteria
to detect zones where a singularity is likely to happen.

A spatial 3-RSR platform has been analyzed along the mo-
tion from a DKP position to the IM configuration. The finite
displacement simulation has been performed with the software
developed with three inputs in the revolute pairs to ground. The
plot of the first nonzero eigenvalue (Fig. 10) indicates how the
3-DOF platform is moving toward a singularity of the IM type.
For every simulated successive position, the procedure for sin-
gularity detection has been used. Here, three of those positions
are explained briefly.

In the first position (Fig. 11), the analysis performed on the
kinematic parameters that express the motion in the lower links
of each leg signals an LIM. There is no increment in the DOF.
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Fig. 11. Position a) showing the three vectors of the motion space numbered
and in different shades of color.

Fig. 12. Position b) with vectors of motion space.

When angular rotations in those links are chosen as inputs,
DKP equations with show null values. The vectors of the
motion space in Fig. 11 are zero in the nodes on the spherical
joints of those links, indicating no motion regardless of the input
given. An instantaneous uncontrolled motion in the platform oc-
curs. The platform has vertical nodal velocities, and therefore,
its angular velocity is on the horizontal plane.

In Fig. 12, the platform reaches its upper position. This time,
kinematic parameters that express the motion of the platform
signal an LIM configuration. There is no increment in the DOF.

The input kinematic parameters show no dependency. How-
ever, the kinematic parameters chosen to represent the motion
of the platform (the output) have a DKP equation with .
Its DOF is found to be zero. No output is obtained, whatever
the inputs. Fig. 12 also shows the vectors of the motion space,
indicating no motion in any node in the platform.

Finally, in the configuration shown in Fig. 13, the instanta-
neous DOF of the mechanism is four, and then it is an IM config-
uration. The uncontrolled motion under locked inputs is found
to be a 3-DOF rotation of the platform about point . If the
six kinematic parameters that represent the platform motion are
chosen, the DOF of the platform is found to be four: three ro-
tations and one translation. Therefore, a constraint singularity
occurs in this position.

The procedure as it is implemented allows the singularity
analysis of simulated paths. Once singularities are detected, the
system offers information that can be used to avoid uncontrolled
motions or to change inputs. IM proximity is evaluated with a
graph that serves also as a platform stability index.

Fig. 13. Position c), IM configuration with the vectors of the four DOF of the
platform.

VI. DISCUSSION

Nowadays, there are roughly three methods in the search
for singularities: degeneracy of the screws (alternatively
Grassmann line geometry), algebraic methods, and numerical
approaches. Symbolic computation may be combined with
them to facilitate the solution.

The first one seems to be the quickest and most efficient, at
least in the finding of the geometric relationships that produce a
singularity. The problem is that there is an additional task. It is
necessary to find the position that accomplishes those conditions
in the workspace. Besides, the procedure requires a good knowl-
edge of the kinematic geometry of the manipulator. All of this im-
plies that the method is strongly dependent on the abilities of the
kinematician and, hence, the possibilities for automatization are
scarce. Less advantages and the same restrictions apply to alge-
braic methods. Finding the geometrical conditions of singularity
is a complex issue. Later, those conditions have to be used to find
the singular configuration. Nevertheless, we have not discarded
the analytical way. In fact, some ideas are under evaluation. In-
stead of looking for the roots of the Jacobian, our approach will
be to work on the polynomial equation of the eigenvalues of the
geometric matrix using symbolic computation.

However, in the area we are focusing on, a greater effort is in
the numerical approach. This is the most laborious and requires
a higher computational cost. However, this research team has
some experience in the numerical analysis of mechanical prob-
lems and believes that it is worth trying. There are some good
reasons for that. The procedure described in this paper is the
starting point for the singularity mapping. We have also cre-
ated a very efficient program for the solving the forward and
inverse position problem of any manipulator (not described in
the paper). The strategy is to mesh the workspace into cells and
apply adaptative refinement techniques using the first nonzero
eigenvalue as an indicator of IM singularities. Other indicators,
such as singular values, are also under evaluation. The fact that
the geometric matrix equation is a homogeneous equation in
terms of linear velocities is an important issue here.
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Fig. 14. 2RR planar platform and IM indicator.

Fig. 15. Three-dimensional plot of the IM indicator.

A preliminary example is given in Fig. 14. The 2-DOF
planar platform 2RR with equal lengths in every link is ana-
lyzed in a given area. A plot of the IM indicator in that area
shows the existence of an IM singularity when the end-effector
is on the origin (see Figs. 14 and 15). A variant of the same
example is given in Fig. 16(a). The 2RR platform is analyzed
in a given area. The plot of the DKP input indicator in the
meshed area [see Fig. 16(b)] shows the existence of a singu-
larity exactly in the position of the linkage shown in Fig. 16(a).
For the sake of clarity, numerical values are not included in
the plot, but there is a zone A where these are very close to
zero. A finer mesh is required here until exact positions of
DKP configurations are found. However, in practical applica-
tions, it is often enough to mark an area of singularities. In
Fig. 16(c), a plot of DKP singularity in the output is shown.
In zone B, the values are close to zero and an area of this type
of singularity is delimited.

Fig. 16. 2RR platform along the DKP indicators in the input and output.

Further research is needed in this field in order to reduce com-
putational costs and optimize tolerance criteria. In every loca-
tion of the platform, there are different possible configurations
that produce different values of the indicators. This is also an
open issue. Finally, this has to be extended to spatial parallel
manipulators. For the time being, these are the open lines in our
research in the field of singularities.

VII. CONCLUSION

We have presented a practical method to detect and classify
singular positions that is easy to automate for any linkage. As
a consequence, an algorithm for singularity detection and anal-
ysis has been implemented in a software for mechanisms. There
are promising features for an automatic singularity analysis not
only of planar, but also spatial, mechanisms and redundant and
nonredundant linkages.

The use of the vectors of the motion space provides the DOF
associated with the singularity configuration of the linkage or
the platform, dependencies among kinematic parameters, and
uncontrollable motions in singular positions. Two types of sin-
gularities have been described; increased mobility IM and DKP
configurations. Constraint singularities can be analyzed using
this procedure.

APPENDIX

In order to show the simplicity to form the velocity equation
in a mechanism using the geometric matrix, a simple example,
as shown in Fig. 17, will be presented.

From the rigid body condition between the nodes and sited
on the extremes of a link

(A1)
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Fig. 17. A four-bar planar linkage.

a matrix equation for velocities in the link is deduced using dif-
ferentiation

(A2)

where is the geometric matrix of the element and has the
data related to bar orientation but is independent of its length,
section, or other mechanical properties. For a bar link 1–2 in
planar motion, the geometric matrix equation is

(A3)

Note that, if preferred, the geometric matrix may be expressed
in terms of the coordinates of the bar nodes and length. In fact,
for spatial mechanisms, the geometric matrix for a rod element
(no rotational DOF on its axis) is expressed more easily in that
way, as shown in (A4), given at the bottom of the page, where

, , and .
In order to find velocities for every node in the linkage, an

expansion of (A2) to the total number of Cartesian coordinates
in the mechanism will be carried out. If the mechanism has
nodes, the number of nodal coordinates for a planar mechanism
will be . Also, the geometric matrix expanded to the whole
mechanism will have an order , in which the terms of
the geometric matrix of the bar link with an order will be
placed in rows and columns , , , and , the rest
being zero. If the mechanism is formed by bar links, there
are matrix equations like (A3). In the linkage of the example,
there are three such equations.

A link of the mechanism is subjected to constraints in po-
sition and velocity imposed by the rest of the links. This is
imposed upon assembling of these expanded matrices, and, as
a consequence, the geometric matrix for the complete mech-
anism is found and is given in (A5), shown at the bottom of
the page.

Now, it is possible to include the constraints imposed by joints
to the fixed element, and therefore, the complete velocity equa-
tion may be expressed as (A6), shown at the top of the next
page, and will provide the solution to the kinematic analysis.
Boundary conditions, such as fixed joints or sliding blocks, are
introduced using the equations that relate nodal velocities of
those joints.

(A4)

(A5)
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(A6)

This review is performed for bar elements. However, any link
of a higher order (e.g., tertiary or quaternary) may be modeled
by bars connected with revolute pairs. Anyway, developing
specific geometric matrices for those links is also an alternative
approach.
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