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TEST 2. SOLUTIONS

SOLUTION EXERCISE 1: For n = 1, 13 = 1 and 12(1+1)2

4 = 4
4 =

1, and the statement fulfills. Suppose now that the statement 13 + 23 +

33 + · · · + k3 = k2(k+1)2

4 fulfills and consider the case k + 1. We have that

13+23+33+ · · ·+k3+(k + 1)3 = k2(k+1)2

4 +(k + 1)3 = k2(k+1)2

4 + 4(k+1)3

4 =
(k+1)2

4 [4(k + 1) + k2] = (k+1)2

4 (k + 2)2 = (k+1)2((k+1)+1)2

4 , and the statement
holds also for the case k + 1.

SOLUTION EXERCISE 2: |z1| =
√
1 + 3 =

√
4 = 2, θ1 = argz1 =

arctag
√
3 = 60◦ and |z2| =

√
2 + 2 =

√
4 = 2, θ2 = argz2 = arctag

√
2√
2
= 45◦.

Thus z = z1z2 = 260◦245◦ = 4105◦ . The cubic roots of the complex number
z are 3

√
435◦ ,

3
√
4155◦ and 3

√
4275◦ .

SOLUTION EXERCISE 3: We calculate the correponding divisions.

2012 = 486.4 + 68

486 = 68.7 + 10

68 = 10.6 + 8

10 = 8.1 + 2

8 = 2.4 + 0

Thus, gcd(2012, 486) = gcd(486, 68) = gcd(68, 10) = gcd(10, 8) = gcd(8, 2) =
2. In addition to this, 2 = 10− 8.1 = 10− [68− 10.6] = (10 + 6.10)− 68 =
7.10 + (−68) = 7[486 − 68.7] + (−68) = 7(486) + (−49 − 1).68 = 7(486) +
(−50).68 = 7(486) + (−50)[2012 − (486)4] = (7 + 200).486 + (−50).2012 =
207(486) + (−50).2012.

SOLUTION EXERCISE 4: Let us write all the natural numbers between
150 and 219 in the following table:

150 151 152 153 154 155 156 157 158 159
160 161 162 163 164 165 166 167 168 169
170 171 172 173 174 175 176 177 178 179
180 181 182 183 184 185 186 187 188 189
190 191 192 193 194 195 196 197 198 199
200 201 202 203 204 205 206 207 208 209
210 211 212 213 214 215 216 217 218 219

We start crossing out all the multiples of the prime number 2, beginning
from 150, i.e, we cross out the corresponding natural numbers every 2 steps
(or i.e, all the even numbers), and we continue crossing out all the multiples
of the prime number 3, beginning from 150, i.e, we cross out the correspond-
ing natural numbers every 3 steps; after, we cross out all the multiples of
the prime number 5, beginning again from 150, i.e, we cross out all the
corresponding natural numbers every 5 steps; later, we do the same for the
prime number 7, beginning from the number 154, which is a multiple of 7;
and next we do the same for the prime number 11, beginning again from
the number 154, which is also a multiple of 11. Finally, we cross out all the
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multiples of the prime number 13, beginning from 156, which is a multiple
of 13.
The process is finished when we erase or cross out all the multiples of the
primes p, being p ≤

√
219. Obviously, a number could be crossed out several

times.
All the remainder numbers in this process are prime numbers. Thus, in the
following table, the prime numbers between 150 and 219 are the ones that
are not crossed out.

6 150 151 6 152 6 153 6 154 6 155 6 156 157 6 158 6 159
6 160 6 161 6 162 163 6 164 6 165 6 166 167 6 168 6 169
6 170 6 171 6 172 173 6 174 6 175 6 176 6 177 6 178 179
6 180 181 6 182 6 183 6 184 6 185 6 186 6 187 6 188 6 189
6 190 191 6 192 193 6 194 6 195 6 196 197 6 198 199
6 200 6 201 6 202 6 203 6 204 6 205 6 206 6 207 6 208 6 209
6 210 211 6 212 6 213 6 214 6 215 6 216 6 217 6 218 6 219

In other words, the prime numbers between 150 and 219 are 151, 157, 163,
173, 179, 181, 191, 193, 197, 199 and 211.

SOLUTION EXERCISE 5: First of all, we realize that the linear con-
gruence 10x ≡ 3(mod 23) has an unique solution, since gcd(10, 23) = 1 | 3,
and that the linear congruence 5x ≡ 4(mod 27) has an unique solution as
well, since gcd(5, 27) = 1 | 4. On the other hand, the inverse of 10 mod-
ule 23 is 7, since 7.10 = 70 ≡ 1(mod 23), and the inverse of 5 module
27 is 11, since 5.11 = 55 ≡ 1(mod 27). Thus, multiplying by 7 the lin-
ear congruence 10x ≡ 3(mod 23) we have that x ≡ 3.7 = 21(mod 23),
and multiplying by 11 the linear congruence 5x ≡ 4(mod 27) we have that
x ≡ 4.11 = 44 ≡ 17(mod 27).
Thus, solving the linear congruence system:

10x ≡ 3 (mod 23)
5x ≡ 4 (mod 27)

is equivalent to solving the linear congruence system:

x ≡ 21 (mod 23)
x ≡ 17 (mod 27);

and if x1 is a particular solution of that congruence system, then x ≡
x1(mod lcm(23, 27)), i.e, x ≡ x1(mod 621) is also a solution of the same
congruence system. Thus, it remains to us to find a particular solution x1
of the initial congruence system. To do this, let us consider x = 21 + 23k,
for some integer k, and replace it on the second linear congruence. Then
21 + 23k ≡ 17(mod 27), i.e, 23k ≡ −4(mod 27), i.e, 23k ≡ 23(mod 27). So
we could take k = 1 and we could consider x1 = 21 + 23.1 = 44.

SOLUTION EXERCISE 6: Fermat’s Little Theorem: If p is a prime
number and a ∈ Z such that p ∤ a, then ap−1 ≡ 1(mod p). Thus, applying
the previous Theorem to the prime p and the integer numbers 1, 2, . . . , p−1
satisfying that neither of them is a multiple of p, we have that

1p−1 ≡ 1(mod p)
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2p−1 ≡ 1(mod p)
...

(p− 1)p−1 ≡ 1(mod p).

Therefore, 1p−1 + 2p−1 + · · · + (p− 1)p−1 ≡ 1 + 1 + · · · (p−1) -times· · · + 1 ≡
p− 1(mod p) ≡ −1(mod p). In conclusion, 1p−1 + 2p−1 + · · ·+ (p− 1)p−1 ≡
−1(mod p), as required.

SOLUTION EXERCISE 7: (i) Being p(x) = x4 + 2x3 − x2 − 2x + 1,
p′(x) = 4x3+6x2−2x−2. Applying the division algorithm to the polynomials
p(x) and p′(x) we have that,

x4 + 2x3 − x2 − 2x+ 1 = (4x3 + 6x2 − 2x− 2)(
1

4
x+

1

8
) + (

−5

4
(x2 + x− 1));

4x3 + 6x2 − 2x− 2 = −5

4
(x2 + x− 1)[(

−4

5
)2(1 + 2x)] + 0.

Thus, gcd(p(x), p′(x)) = gcd(4x3 +6x2 − 2x− 2, −5
4 (x2 + x− 1)) = −5

4 (x2 +

x− 1) ∼ (x2 + x− 1).
(ii) If a ∈ R would be a multiple root of the polynomial p(x), then a would
be a common root of the polynomials p(x) and p′(x), in other words, a would
be a root of the gcd(p(x), p′(x)) = x2+x−1. Thus, let us calculate the roots

of the polynomial x2 + x − 1. These are α1 = −1+
√
5

2 and α2 = −1−
√
5

2 . In

consequence, (x− α1)
2(x− α2)

2 = ((x− α1)(x− α2))
2 | p(x). On the other

hand, since (x−α1)(x−α2) = x2+x−1, it follows that (x2 + x− 1)
2 | p(x).

Finally, since p(x) is a monic polynomial of degree 4 and also (x2 + x− 1)
2

is a polynomial of degree 4, we conclude that p(x) = (x2 + x− 1)
2
.

SOLUTION EXERCISE 8: First of all, we decompose the polynomial
x4 + 2x3 + x2 as x4 + 2x3 + x2 = x2(x+ 1)2. We propose 3x+1

x4+2x3+x2 =
A
x
+ B

x2 + C
(x+1) +

D

(x+1)2
. Making computations we have that,

3x+ 1

x4 + 2x3 + x2
=

Ax(x+ 1)2 +B(x+ 1)2 + Cx2(x+ 1) +Dx2

x2(x+ 1)2
.

In particular, 3x+1 = Ax(x+ 1)2+B(x+ 1)2+Cx2(x+1)+Dx2. Evaluating
both expressions on some values:

x = 0, we have that 1 = B

x = −1, we have that − 2 = D =⇒ D = −2

x = 1, we have that 2A+ C = 1 =⇒ C = 1− 2A

x = 2, we have that 3A+ 2C = 1.

Substituting C in the expression 3A+2C = 1, it follows that 3A+2(1−2A) =
−A+ 2 = 1, and consequently A = 1 and thus C = −1.
Therefore 3x+1

x4+2x3+x2 = 1
x
+ 1

x2 − 1
(x+1) −

2
(x+1)2

.

SOLUTION EXERCISE 9: First of all, observe that

|x− 1| =
{

−x+ 1, if x < 1
x− 1, if x ≥ 1
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|x+ 4| =
{

−x− 4, if x < −4
x+ 4, if x ≥ 4

Thus, if x < −4 we propose −x+1−x−4 > 10, which implies −2x−3 > 10
i.e. 2x+ 3 < −10 i.e. x < −13

2 .
If −4 ≤ x < 1 we propose −x+ 1 + x+ 4 > 10, which implies 5 > 10. This
means that there is not solution of the initial inequation for −4 ≤ x < 1.
Finally, if x ≥ 1, we propose x − 1 + x + 4 > 10, which implies 2x > 7 i.e
x > 7

2 .

Thus, the solution of the initial inequation is (−∞,−13
2 ) ∪ (72 ,∞).


