MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

SOLUTIONS: 5th SUBJECT. CONGRUENCES

SOLUTION EXERCISE 1: In congruence language, we have to find an integer number r comprehended between 0 and 12 , for which $n \equiv r(\bmod 12)$, in other words, we have to reduce n to modulo 12 . First of all, $4!=24 \equiv 0(\bmod 12)$, and consequently if $k \geq 4$,

$$
k!=k(k-1) \ldots 6 \cdot 5 \cdot 4!\equiv k(k-1) \ldots 6 \cdot 5 \cdot 0 \equiv 0(\bmod 12)
$$

Thus, $n \equiv 1!+2!+3!(\bmod 12)$, and therefore $n \equiv 9(\bmod 12)$.
SOLUTION EXERCISE 2: We have to prove that the remainder of the division of $5^{2 k}+3 \cdot 2^{5 k-2}$ by 7 is 0 . By applying congruences' properties and since $3 \equiv-2^{2}(\bmod 7)$ is fulfilled, we get the following congruences modulo 7 :

$$
5^{2 k}+3 \cdot 2^{5 k-2} \equiv 5^{2 k}+\left(-2^{2}\right) \cdot 2^{5 k-2} \equiv 5^{2 k}-2^{5 k} \equiv 25^{k}-32^{k}(\bmod 7)
$$

On the other hand, since $25 \equiv 4(\bmod 7)$ and $32 \equiv 4(\bmod 7)$, by applying congruences’ properties, we obtain that

$$
5^{2 k}+3 \cdot 2^{5 k-2} \equiv 25^{k}-32^{k} \equiv 4^{k}-4^{k} \equiv 0(\bmod 7)
$$

SOLUTION EXERCISE 3: Write n in decimal form,

$$
n=a_{0}+a_{1} \cdot 10+a_{2} \cdot 10^{2}+\cdots+a_{k} \cdot 10^{k}
$$

where a_{i} satisfies $0 \leq a_{i} \leq 9$. Since $10 \equiv 1(\bmod 9)$, applying congruences's properties, $10^{i} \equiv 1(\bmod 9)$ and $a_{i} \cdot 10^{i} \equiv a_{i}(\bmod 9)$. Thus, $n \equiv a_{1}+a_{2}+\cdots+a_{n}(\bmod 9)$.

SOLUTION EXERCISE 4: Since $614 \equiv 2(\bmod 17)(614=36 \cdot 17+2)$, then $614^{6943} \equiv 2^{6943}(\bmod 17)$. Since $17 \nmid 2$, using Fermat's Little Theorem, we have that $2^{16} \equiv 1(\bmod 17)$. Now, since $6943=433 \cdot 16+15$,

$$
2^{6943} \equiv 2^{433 \cdot 16+15} \equiv\left(2^{16}\right)^{433} 2^{15} \equiv 1^{433} 2^{15} \equiv 2^{15}(\bmod 17)
$$

Finally, since $2^{4} \equiv 16 \equiv-1(\bmod 17)$, then

$$
2^{15} \equiv 2^{4 \cdot 3+3} \equiv\left(2^{4}\right)^{3} 2^{3} \equiv(-1)^{3} 2^{3} \equiv-8 \equiv 9(\bmod 17)
$$

Thus, the remainder that we were looking for is 9 .
SOLUTION EXERCISE 5: If $x \in \mathbb{Z}$ is a solution for this linear congruence, then $13 x=2+31 q$, for some $q \in \mathbb{Z}$. Observe that $\operatorname{gcd}(13,31)=1$, and then by applying Bezout's identity, there exist two integer numbers s, t for which $1=13 s+31 t$. Thus,
$13 s \equiv 1(\bmod 31)$, and multiplying the previous congruence by 2 , we obtain $13(2 s) \equiv$ $2(\bmod 31)$. This is, $x=2 s(s \in \mathbb{Z})$ is a solution for the initial congruence.

SOLUTION EXERCISE 6: By Fermat's Little Theorem, the congruence $x^{p-1} \equiv$ $1(\bmod p)$, or equivalently the congruence $x^{p-1}-1 \equiv 0(\bmod p)$ has $p-1$ different solutions. To be more precise, the solutions of the previous congruence are: $1,2, \ldots, p-1$. Thus,

$$
x^{p-1}-1 \equiv(x-1)(x-2) \ldots(x-(p-1))(\bmod p)
$$

Now, since any of those values of x fulfills this congruence, by taking $x=0$ we obtain that:

$$
-1 \equiv(-1)(-2) \ldots(-(p-1))(\bmod p) \equiv(-1)^{p-1} 1 \cdot 2 \ldots(p-1)(\bmod p)
$$

this is, $(-1)^{p-1} \cdot(p-1)!+1 \equiv 0(\bmod p)$. In particular, if $p=2$, we get $-1+1 \equiv$ $0(\bmod 2)$, which is obvious, and if p is an odd number, we get $(p-1)!+1 \equiv 0(\bmod p)$.

