

MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology Department of Mathematics University of the Basque Country

SOLUTIONS: 5th SUBJECT. CONGRUENCES

SOLUTION EXERCISE 1: In congruence language, we have to find an integer number r comprehended between 0 and 12, for which $n \equiv r \pmod{12}$, in other words, we have to reduce n to modulo 12. First of all, $4! = 24 \equiv 0 \pmod{12}$, and consequently if $k \ge 4$,

$$k! = k(k-1)\dots 6 \cdot 5 \cdot 4! \equiv k(k-1)\dots 6 \cdot 5 \cdot 0 \equiv 0 \pmod{12}.$$

Thus, $n \equiv 1! + 2! + 3! \pmod{12}$, and therefore $n \equiv 9 \pmod{12}$.

SOLUTION EXERCISE 2: We have to prove that the remainder of the division of $5^{2k}+3\cdot2^{5k-2}$ by 7 is 0. By applying congruences' properties and since $3 \equiv -2^2 \pmod{7}$ is fulfilled, we get the following congruences modulo 7:

$$5^{2k} + 3 \cdot 2^{5k-2} \equiv 5^{2k} + (-2^2) \cdot 2^{5k-2} \equiv 5^{2k} - 2^{5k} \equiv 25^k - 32^k \pmod{7}.$$

On the other hand, since $25 \equiv 4 \pmod{7}$ and $32 \equiv 4 \pmod{7}$, by applying congruences' properties, we obtain that

$$5^{2k} + 3 \cdot 2^{5k-2} \equiv 25^k - 32^k \equiv 4^k - 4^k \equiv 0 \pmod{7}.$$

SOLUTION EXERCISE 3: Write *n* in decimal form,

$$n = a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + \dots + a_k \cdot 10^k$$
,

where a_i satisfies $0 \le a_i \le 9$. Since $10 \equiv 1 \pmod{9}$, applying congruences's properties, $10^i \equiv 1 \pmod{9}$ and $a_i \cdot 10^i \equiv a_i \pmod{9}$. Thus, $n \equiv a_1 + a_2 + \cdots + a_n \pmod{9}$.

SOLUTION EXERCISE 4: Since $614 \equiv 2 \pmod{17}$ ($614 = 36 \cdot 17 + 2$), then $614^{6943} \equiv 2^{6943} \pmod{17}$. Since $17 \nmid 2$, using Fermat's Little Theorem, we have that $2^{16} \equiv 1 \pmod{17}$. Now, since $6943 = 433 \cdot 16 + 15$,

$$2^{6943} \equiv 2^{433 \cdot 16 + 15} \equiv (2^{16})^{433} 2^{15} \equiv 1^{433} 2^{15} \equiv 2^{15} \pmod{17}.$$

Finally, since $2^4 \equiv 16 \equiv -1 \pmod{17}$, then

$$2^{15} \equiv 2^{4 \cdot 3 + 3} \equiv (2^4)^3 2^3 \equiv (-1)^3 2^3 \equiv -8 \equiv 9 \pmod{17}.$$

Thus, the remainder that we were looking for is 9.

SOLUTION EXERCISE 5: If $x \in \mathbb{Z}$ is a solution for this linear congruence, then 13x = 2 + 31q, for some $q \in \mathbb{Z}$. Observe that gcd(13, 31) = 1, and then by applying Bezout's identity, there exist two integer numbers s, t for which 1 = 13s + 31t. Thus,

 $13s \equiv 1 \pmod{31}$, and multiplying the previous congruence by 2, we obtain $13(2s) \equiv 2 \pmod{31}$. This is, x = 2s ($s \in \mathbb{Z}$) is a solution for the initial congruence.

SOLUTION EXERCISE 6: By Fermat's Little Theorem, the congruence $x^{p-1} \equiv 1 \pmod{p}$, or equivalently the congruence $x^{p-1} - 1 \equiv 0 \pmod{p}$ has p - 1 different solutions. To be more precise, the solutions of the previous congruence are: $1, 2, \ldots, p - 1$. Thus,

$$x^{p-1} - 1 \equiv (x - 1)(x - 2) \dots (x - (p - 1)) \pmod{p}$$

Now, since any of those values of x fulfills this congruence, by taking x = 0 we obtain that:

$$-1 \equiv (-1)(-2) \dots (-(p-1)) \pmod{p} \equiv (-1)^{p-1} 1 \cdot 2 \dots (p-1) \pmod{p},$$

this is, $(-1)^{p-1} \cdot (p-1)! + 1 \equiv 0 \pmod{p}$. In particular, if p = 2, we get $-1 + 1 \equiv 0 \pmod{2}$, which is obvious, and if p is an odd number, we get $(p-1)! + 1 \equiv 0 \pmod{p}$.