MATHS BASIC COURSE FOR UNDERGRADUATES

Leire Legarreta, Iker Malaina and Luis Martínez

Faculty of Science and Technology
Department of Mathematics
University of the Basque Country
(cc) (i)(8)

EY NC SA

SOLUTION EXERCISE 1: The only possible remainders of the division of a by 3 are 0,1 or 2 . Thus, there are three possibilities:
(i) if $a=3 q$, then $a^{2}=9 q^{2}=3\left(3 q^{2}\right)=3 k$;
(ii) if $a=3 q+1$, then $a^{2}=9 q^{2}+6 q+1=3\left(3 q^{2}+2 q\right)+1=3 k+1$;
(iii) if $a=3 q+2$, then $a^{2}=9 q^{2}+12 q+4=3\left(3 q^{2}+4 q+1\right)+1=3 k+1$.

SOLUTION EXERCISE 2: $(3043)_{5}=3 \cdot 5^{3}+0 \cdot 5^{2}+4 \cdot 5+3=398$.
SOLUTION EXERCISE 3: We divide the number 1025 by 7. Then, $1025=$ $146 \cdot 7+3$. Latter, we divide the number 146 by $7: 146=20 \cdot 7+6$, and finally 20 by 7: $20=2 \cdot 7+6$. Thus,

$$
1025=146 \cdot 7+3=(20 \cdot 7+6) \cdot 7+3=((2 \cdot 7+6) \cdot 7+6) \cdot 7+3
$$

and taking away common factors, we get

$$
1025=2 \cdot 7^{3}+6 \cdot 7^{2}+6 \cdot 7+3=(2663)_{7}
$$

SOLUTION EXERCISE 4: $3027=189 \cdot 16+3$ and $189=11 \cdot 16+13$, and consequently $3027=(B D 3)_{16}$.

SOLUTION EXERCISE 5: Observe that the divisors of 12 are: $\pm 1, \pm 2, \pm 3$, $\pm 4, \pm 6$ and ± 12, and that the divisors of 18 are: $\pm 1, \pm 2, \pm 3, \pm 6$ and ± 18. Thus, $\operatorname{gcd}(-12,18)=6$.

SOLUTION EXERCISE 6: First, we divide the number 1479 by 272 and we get the expression $1479=5 \cdot 272+119$. Thus,

$$
\operatorname{gcd}(1479,272)=\operatorname{gcd}(272,119)
$$

Repeating the same argument, we get that $272=2 \cdot 119+34$. Thus,

$$
\operatorname{gcd}(1479,272)=\operatorname{gcd}(272,119)=\operatorname{gcd}(119,34)
$$

Again, $119=3 \cdot 34+17$, and consequently

$$
\operatorname{gcd}(1479,272)=\operatorname{gcd}(272,119)=\operatorname{gcd}(119,34)=\operatorname{gcd}(34,17)
$$

Finally, $34=2 \cdot 17+0$. Thus,

$$
\operatorname{gcd}(1479,272)=\operatorname{gcd}(272,119)=\cdots=\operatorname{gcd}(17,0)=17
$$

Let us move now to express the $\operatorname{gcd}(1479,272)$ as a combination of the numbers 1479 and 272.

$$
\begin{aligned}
1479 & =5 \cdot 272+119 \\
272 & =2 \cdot 119+34, \\
119 & =3 \cdot 34+17 \\
34 & =2 \cdot 17+0
\end{aligned}
$$

We know that $\operatorname{gcd}(1479,272)=17$. Therefore,

$$
\begin{gathered}
17=119-3 \cdot 34=119-3 \cdot(272-2 \cdot 119)= \\
7 \cdot 119-3 \cdot 272=7 \cdot(1479-5 \cdot 272)-3 \cdot 272=7 \cdot 1479-38 \cdot 272
\end{gathered}
$$

